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1 Soccer baselines

The task of forecasting (or imputing) player trajectories based on the future
movement of the ball or the opposing team has been seldom explored by state-of-
the-art methods. To our knowledge, there are few baseline methods that address
this aspect in forecasting tasks [2,24]. Therefore, we implemented these pipelines
to showcase the results for the soccer dataset presented in Table 1 of the main
paper. The baselines used for comparison are described as follows:
Velocity: As a sanity check, we adopted this baseline, projecting agent predic-
tions linearly based on observed velocity.
RNN: This baseline utilizes an encoder with LSTM, employing shared weights
to capture input representations of each agent, along with an MLP decoder for
prediction [4].
GRNN: This is a non-variational version of GVRNN [18, 24], generating tra-
jectories without sampling. The training process involves using the ADE loss
(LADE). Yeh et al. [24] demonstrated superior results of GRNN over GVRNN in
a soccer context. We use the implementation from Teranishi et al. [19].
GRNN + Att: Similar to the previous baseline but using a Graph Attention
Network (GAT) instead of GNNs, inspired by [5,10].
Transformer: Inspired by [2,3], this baseline uses the same pipeline as ours but
incorporates attention through the flattened temporal and social dimensions. It
employs a 2D positional encoder [20], making it a non-equivariant baseline.

2 Training procedure

The models were trained on an NVIDIA RTX A6000 GPU for 100 epochs, using
a batch size of 64 samples. We employed the AdamW optimizer [12, 14] with a
learning rate of 0.001 and an epsilon value of 1 × 10−4. The learning rate was
reduced by a factor of 0.5 every 20 epochs. To prevent gradient explosion, we ap-
plied gradient clipping with a threshold of 5, ensuring stable optimization. Model
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weights were initialized using the Xavier normal distribution [8]. All experiments
have been trained separately.

The hyperparameters for our method and were set as follows: 128-dimensional
embeddings (d), 16 heads in each Multi-Head-Attention (MHA) module, a hid-
den dimension of 512 for each Set Attention Block (SAB). In TranSPORT-
mer with state classification, the weight for the Cross-Entropy (CE) loss was
set to λ = 4 to balance the magnitudes of the two losses. It is worth noting that
without state classification, λ = 0.

3 Basketball experiments

3.1 Forecasting with conditioning

In Table 2 of the main paper, we conduct a comparative analysis between our
method and forecasting-based models using the Basketball-VU dataset. The ma-
jority of these models are generative stochastic approaches primarily focused on
imitative tasks. However, they are generally sub-optimal at handling a significant
number of agent interactions. As a result, their ability to accurately forecast tra-
jectories for offensive and defensive players jointly is hindered, especially when
trying to model trajectories for both teams simultaneously. Consequently, these
models often resort to separately modeling these trajectories. In contrast, our
method can model offensive and defensive players’ trajectories simultaneously
using a single model.

Furthermore, our approach can generate trajectories based on the movement
of the opponent players and/or the ball. This capability allows us to predict their
future movements much more accurately. To illustrate this point, we would like
to present an additional experiment similar to Table 1 in our main paper but
focused on the basketball context. This experiment showcases the results of fore-
casting basketball trajectories for players or the offensive/defensive team when
conditioned on the other team and/or the ball. The results of this experiment
are presented in Table 1, demonstrating the efficacy of our model in encod-
ing these interactions and providing more accurate results as the conditioning
agents increase. It’s important to note that defense predictions show significant
improvement when conditioned on the offensive team alone, more so than when
conditioned on the ball. This is due to the intrinsic nature of basketball, partic-
ularly in one-on-one defense situations.

Predict P Players Offense Defense

Condition None Ball None Ball Defense Ball+Defense None Ball Offense Ball+Offense

ADEP ↓ 7.75 7.05 9.19 8.47 4.29 3.96 6.31 5.64 3.67 3.14
FDEP ↓ 11.65 11.13 14.24 13.78 7.44 7.05 9.04 8.48 5.78 4.76

Table 1: Evaluation in Basketball-VU dataset in player trajectory forecast-
ing with TranSPORTmer w/o CLS. Predictions are generated with a time horizon
of 8s using a prior of 2s. All metrics are in feet.
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3.2 Unified imputation and forecasting

Fig. 1: Initial timestep example of Basketball-TIP dataset for “circle mode”
and “camera mode”. The depicted (predicted) players are those with at least one
observation inside the circle/camera view during the imputation task.

Fig. 2: Qualitative evaluation in Basketball-TIP dataset. Imputation during
first 6.4s and forecasting during the subsequent 1.6s. Refer to the supplemental video
to view the animated version.
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In Table 3 of the main paper, we present a comparison against the state-of-the-
art in unified imputation and forecasting tasks using the Basketball-TIP dataset.
Here, we include two figures to provide visual support for the concepts of “circle
mode” and “camera mode”, showing one test sample solved for each strategy.
Refer to Fig. 1 to view the initial time-step of the task, where the simulated
view is depicted. Refer to Fig. 2 to view the same sequence solved until the final
step with the predicted trajectories.

4 Training with missing data

In this section, we present two experiments conducted using the soccer dataset,
focusing on handling missing data for goalkeepers. The first experiment involves
generating the adapted dataset, enabling us to compare our approach against
ballradar [23]. The second experiment assesses our model’s capability to predict
ball movements using the original dataset.

4.1 Adapted dataset: goalkeepers imputation and inference

We outline the methodology for goalkeeper trajectory imputation and inference,
specifically tailored for creating the adapted dataset to facilitate a comparison
between TranSPORTmer and ballradar [11] in ball trajectory tasks. The ball-
radar baseline relies on the positions of both goalkeepers for optimal performance
in ball prediction tasks.

We initiate the process with the original soccer dataset discussed in Section
5.1 of the main paper. Since the observations are derived from optical tracking,
several goalkeeper data points are missing. To address this, we initially filter
and retain sequences containing at least one observation of a goalkeeper. Sub-
sequently, we train TranSPORTmer in goalkeeper trajectory prediction using
these adapted sequences. A random mask is applied, obscuring 97% to 100%
of the goalkeepers’ observations. The goalkeepers’ unavailable observations are
ignored by our model using the NaN-mask during training.

The evaluation metrics for goalkeepers’ trajectory inference and imputation
in the test samples are presented in Table 2. In the inference task, all available
observations are concealed (100% mask), and trajectory imputation is performed
with 97% of available observations hidden (97% mask). Figure 3 showcases two
test samples solved with all ground truth observations hidden (100% mask).
Using this trained model, we construct the adapted dataset by imputing the
positions of missing observations for goalkeepers with at least one observation. In
cases where one goalkeeper has no observations throughout the entire sequence,
we manually set its position to a standard field position. Consequently, the new
adapted dataset comprises 73,595 sequences for training, 6,628 for validation,
and 5,725 for testing.
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Fig. 3: Goalkeepers inference through the full 9.6s sequence. All available
goalkeepers’ observations are hidden.

Task Mask ADE ↓ MaxErr ↓

Inference 100% 1.97 3.32
Imputation 97% 0.82 1.96

Table 2: Evaluation of goalkeepers’ imputation and inference on 9.6s se-
quences. The model utilized is TranSPORTmer w/o CLS. All metrics are in meters.

4.2 Ball inference

To ensure a fair comparison, in the main paper, we present the results of our
method trained and evaluated using the adapted soccer dataset, which con-
tains fewer sequences but includes inferred goalkeeper positions. Here, we aim
to demonstrate the effectiveness of our model in predicting ball location using
the original dataset, which lacks some goalkeeper observations but has approxi-
mately 10,000 (12.71%) more sequences for training. We present the results for
ball inference in Table 3, using both the adapted dataset without missing data
(adapted dataset w/o missing data) and the original dataset with missing data
(original dataset w missing data). It’s important to note that our model can
be trained with incomplete data, allowing us to train on more sequences and
leading to improved results.

adapted dataset w/o missing data original dataset w missing data

ballradar (KDD’23) Ours w/o CLS Ours Ours w/o CLS Ours

ADE ↓ 3.89 2.89 2.71 2.73 2.57
MaxErr ↓ 8.79 7.78 7.39 7.58 7.22
Acc (%) ↑ - - 80.84 - 81.64

Table 3: Evaluation in ball inference in soccer. Predictions are generated through
the full 9.6s sequence. All metrics, except Acc, are in meters.
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5 Coarse-to-fine ablation
In this section, we perform an ablation regarding the number of the encoders
of the proposed architecture. The considered task is the ball inference and we
compare Our w/o CLS, which utilize two encoders that act as a coarse-to-fine
manner, against utilizing one-single encoder and three encoders. A single encoder
yelds ADE and MaxErr metrics of 4.40m and 9.83m, respectively, compared to
our results of 2.71m and 7.39m (see Table 4 main paper). Figure 4 here shows
attention maps for Seq1 and Seq2 using a single encoder, exhibiting noisier focus
compared to our fine encoder (see “Ball Attn in second SABS” in Fig.4-right main
paper), leading to suboptimal results. Using three encoders fails to converge.

Fig. 4: Results compared to Fig.4-right of the main paper using only one encoder.

6 Pedestrian forecasting
Although analyzing urban pedestrian scenes is outside the main scope of this
paper, for completeness we have included an experiment with the benchmark
dataset ETH-UCY [13, 15]. This dataset comprises five different subsets: ETH,
Hotel, Univ, Zara1, and Zara2. We follow the established convention of leave-one-
out training [9] and employ the task of forecasting 12 future time-steps based on
8 preceding time-steps, with a frame rate of 2.5Hz. The results of our experiment
against deterministic state-of-the-art models are presented in Table 4. It is worth
pointing out that our approach is on a par with the most recent architectures,
many of which are specifically tailored for pedestrian contexts, and achieves
strong results in three subsets (ETH, Zara1, Zara2) and on Average. We achieve
a 4.3% improvement in ADE on the ETH subset.

Model ETH Hotel Univ Zara1 Zara2 Average

S-LSTM [1] CVPR’16 1.09/2.35 0.79/1.76 0.67/1.40 0.47/1.00 0.56/1.17 0.72/1.54
SGAN-ind [9] CVPR’18 1.13/2.21 1.01/2.18 0.60/1.28 0.42/0.91 0.52/1.11 0.74/1.54
TransF [7] ICPR’20 1.03/2.10 0.36/0.71 0.53/1.32 0.44/1.00 0.34/0.76 0.54/1.17
Trajectron++ [17] ECCV’20 1.02/2.00 0.33/0.62 0.53/1.19 0.44/0.99 0.32/0.73 0.53/1.11
MemoNet [21] CVPR’22 1.00/2.08 0.35/0.67 0.55/1.19 0.46/1.00 0.32/0.82 0.55/1.15
Autobots [6] ICLR’22 1.02/1.89 0.32/0.60 0.54/1.16 0.41/0.89 0.32/0.71 0.52/1.05
EqMotion [22] CVPR’23 0.96/1.92 0.30/0.58 0.50/1.10 0.39/0.86 0.30/0.68 0.49/1.03
Social-Transmotion [16] ICLR’24 0.93/1.81 0.32/0.60 0.54/1.16 0.42/0.90 0.32/0.70 0.51/1.03

Our w/o CLS 0.89/1.87 0.36/0.73 0.57/1.22 0.40/0.87 0.31/0.69 0.51/1.08

Table 4: Evaluation on ETH-UCY dataset in pedestrian forecasting
(ADE/FDE). The observation is performed during 8 time-steps (3.2s) while the fore-
casting is performed during the subsequent 12 time-steps (4.8s). Results are extracted
from previous works [16,22].
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