
Structure-Centric Robust Monocular Depth
Estimation via Knowledge Distillation:

Supplementary Material

In this supplementary material, we expand upon the main text by offering
clarifications on its content, presenting a comprehensive set of experimental re-
sults, and including enhanced visual representations of feature extraction and
depth estimation processes. This material serves to deepen the reader’s under-
standing and provide a more thorough insight into the methodologies and out-
comes discussed in the primary research.

A Clarification on sub-problems

Our work addresses three sub-problems in monocular scene structure: depth
structure consistency, local texture disambiguation, and semantic and structural
correlation. Depth structure consistency is a fundamental problem that monoc-
ular depth estimation (MDE) needs to address. We clarify the issues of semantic
and structure correlation that many previous works mentioned. Building on this
foundation, we propose the depth disambiguation problem of local texture. Our
main contributions are: observing the influence of ambient lighting on scene
structure and using it to guide depth disambiguation of local texture; modeling
the embedding correlation between semantic features and scene struc-
ture features through isomorphic graph knowledge distillation.

B Trade-offs between clear and challenging performances

Further evaluation on the public datasets DENSE and DIODE confirms that our
model outperforms baseline methods, which primarily address depth consistency,
such as MonoDepth2 and MonoViT, in terms of accuracy on clear test sets. The
comparative results are detailed in Tables 1 and 2.

C Performance Metrics Detailed Explanation

In this section, we elaborate on the computation methodologies for all metrics
utilized within our research, aiming to provide a comprehensive understanding
of how performance is quantified. Our evaluation framework prioritizes lower
values for Absolute Relative Difference (Abs Rel), Squared Relative Difference
(Sq Rel), Root Mean Squared Error (RMSE), and Root Mean Squared Error
in log scale (RMSE log), while higher values of δ1, δ2, and δ3 thresholds denote
superior performance.
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Table 1: Generalization performance comparison of MDE on the DIODE
benchmark. To ensure fairness in comparisons and avoid introducing any corrupted
samples, all the models mentioned above are trained on the KITTI Clear training
dataset. Upper Section: ResNet-based Architectures. Lower Section: Hybrid Archi-
tectures. ↓: Lower is better. ↑: Higher is better. (SCDepthV3 employs an additional
supervised depth estimation teacher model to provide labels.)

Method Knowledge
Abs
Rel ↓

Sq
Rel ↓ RMSE↓ RMSE

Log ↓ δ1 ↑ δ2 ↑ δ3 ↑

MonoDepth2 M 0.417 6.041 6.593 0.427 0.541 0.769 0.880
SCDepthV1 M 0.416 5.807 6.196 0.430 0.518 0.765 0.886
DynaDepth M 0.453 6.671 6.727 0.446 0.517 0.756 0.871
HRDepth M 0.433 6.810 6.655 0.439 0.522 0.758 0.873

SCDepthV3 M+D 0.365 4.370 5.526 0.386 0.576 0.808 0.907
SGDepth M+I 0.459 7.409 7.160 0.459 0.503 0.741 0.863

PackNet-SfM M+S 0.443 6.345 6.664 0.449 0.507 0.749 0.868
OursR M+S 0.414 6.011 6.381 0.426 0.542 0.771 0.882

MonoViT M 0.348 3.750 5.006 0.367 0.599 0.825 0.911
LiteMono M 0.454 6.598 6.724 0.465 0.486 0.734 0.855
OursT M+S 0.340 3.708 5.118 0.366 0.595 0.825 0.916

Table 2: Detailed performance comparison of monocular depth estimation on the
DENSE Clear test set. To ensure fairness in comparisons and avoid introducing any
corrupted samples, all the models mentioned above are trained on the KITTI Clear
training dataset. Upper Section: ResNet-based Architectures. Lower Section: Hybrid
Architectures. ↓: Lower is better. ↑: Higher is better.

Method Knowledge
Abs
Rel ↓

Sq
Rel ↓ RMSE↓ RMSE

Log ↓ δ1 ↑ δ2 ↑ δ3 ↑

MonoDepth2 M 0.281 1.784 4.995 0.383 0.572 0.780 0.889
SCDepthV1 M 0.297 1.822 5.147 0.417 0.507 0.724 0.869
HRDepth M 0.272 1.501 4.681 0.366 0.532 0.785 0.923

SCDepthV3 M+D 0.289 1.837 5.152 0.397 0.531 0.750 0.882
DynaDepth M+I 0.273 1.506 4.912 0.386 0.493 0.774 0.900
SGDepth M+S 0.261 1.459 4.856 0.368 0.547 0.794 0.911

PackNet-SfM M+S 0.258 1.369 4.585 0.357 0.550 0.800 0.917
OursR M+S 0.256 1.445 4.645 0.354 0.575 0.815 0.911

MonoViT M 0.242 1.152 4.320 0.330 0.555 0.814 0.944
LiteMono M 0.310 2.096 5.095 0.367 0.481 0.802 0.921
OursT M+S 0.218 0.915 3.725 0.298 0.606 0.849 0.961
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Absolute Relative Difference. The Absolute Relative Difference quantifies
the average relative difference between the estimated depth values and the
ground truth, defined as

EAbsRel =
1

N

N∑
i=1

|D̂i
t −Di

t|
Di

t

, (1)

where Di
t represents the ground truth depth for the ith pixel, D̂i

t is the estimated
depth, and N denotes the total number of instances in the dataset.
Squared Relative Difference. The Squared Relative Difference emphasizes
larger errors more significantly by computing the average of the squared relative
differences between the predicted and actual depth values as
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Root Mean Squared Error. The RMSE is a standard metric for evaluating
the accuracy of predictions, calculating the square root of the average of the
squared differences between estimated and true values:
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Root Mean Squared Error Log. The RMSE log applies a logarithmic trans-
formation prior to computing the squared differences, calculated as

ERMSELog =

√√√√ 1

N
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(log(D̂i
t + 1)− log(Di

t + 1))2. (4)

Accuracy under Thresholds. These thresholds measure the percentage of
predictions that fall within specified factor thresholds of the actual depth values,
aiming to capture the accuracy of the depth estimation, defined as:
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where r ∈ {1, 2, 3}, corresponding to the thresholds 1.25, 1.252, and 1.253 re-
spectively. A prediction is considered accurate if its ratio to the ground truth is
less than the threshold value.

By leveraging these metrics, we ensure a holistic evaluation of our model’s
performance, capturing both the magnitude and distribution of the errors, as
well as the precision of the depth estimations.
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Table 3: Knowledge Form Abbreviations

Abbr. Knowledge Form

M Monocular Camera
D Pseudo Depth Map
I Inertial Measurement Unit
S Implicit & Explicit Semantics

Table 4: The weights for balanc-
ing the losses, including λp, λv, λe,
λr, λo, and λd.

λ Value

λp, λe 1.0
λv, λr 0.1
λo, λd 0.001

D Overview of Additional Knowledge Forms

In our experimental comparison tables, we annotate the types of knowledge forms
utilized by the methods, with the detailed descriptions of these knowledge forms
presented in Table 3. Our method uniquely uses implicit semantic information,
unlike other related works that depend on explicitly annotated semantic labels
for training constraints.

E Weights of Losses

The table in 4 shows the specific values for λp, λv, λe, λr, λo, and λd that we
employ. Our primary objective remains to guide the model in achieving depth
estimation, hence we prioritize the weights for depth structure consistency. To
further guide the estimation of illumination, we set these weights higher than
those for feature decoupling or distillation loss. Setting overly large weights on
losses that affect features can disrupt the effective training of depth estimation.

F Detailed Performace Comparion

In the main text, due to space constraints, we have selected only a subset of the
most representative metrics. For the sake of completeness, we provide a detailed
performance comparison of all metrics in the supplementary material.

G Encoder Feature Visualization Techniques

As displayed in Algorithm 1, the visualization Vt emerges as a powerful tool
to demystify the complex feature representations generated by the texture en-
coder and structure encoder in . By leveraging Principal Component Analysis
(PCA) to distill the multidimensional feature space into a singular, interpretable
dimension. This method effectively highlights the spatial distribution and inten-
sity variations within the encoded features, offering insights into the encoder’s
focus and its differentiation of input data aspects. The transition from high-
dimensional representations to a comprehensible visual format not only aids in
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Table 5: Detailed performance comparison of monocular depth estimation on the
KITTI Snow test set. To ensure fairness in comparisons and avoid introducing any
corrupted samples, all the models mentioned above are trained on the KITTI Clear
training dataset. Upper Section: ResNet-based Architectures. Lower Section: Hybrid
Architectures. ↓: Lower is better. ↑: Higher is better.

Method Knowledge
Abs
Rel ↓

Sq
Rel ↓ RMSE↓ RMSE

Log ↓ δ1 ↑ δ2 ↑ δ3 ↑

MonoDepth2 M 0.462 6.309 11.397 0.537 0.330 0.608 0.796
SCDepthV1 M 0.435 4.962 10.871 0.528 0.335 0.619 0.804
HRDepth M 0.460 5.826 10.749 0.538 0.331 0.605 0.790

SCDepthV3 M+D 0.410 4.159 10.721 0.523 0.330 0.619 0.816
DynaDepth M+I 0.484 6.179 11.449 0.571 0.301 0.571 0.768
SGDepth M+S 0.473 6.487 11.451 0.541 0.322 0.606 0.790

PackNet-SfM M+S 0.426 5.372 10.879 0.509 0.349 0.638 0.820
OursR M+S 0.404 4.454 10.093 0.490 0.358 0.660 0.841

LiteMono M 0.381 3.858 9.794 0.476 0.355 0.675 0.859
MonoViT M 0.230 1.893 6.951 0.316 0.621 0.858 0.942
OursT M+S 0.224 1.790 6.899 0.314 0.627 0.859 0.942

Table 6: Detailed performance comparison of monocular depth estimation on the
KITTI Frost test set. To ensure fairness in comparisons and avoid introducing any
corrupted samples, all the models mentioned above are trained on the KITTI Clear
training dataset. Upper Section: ResNet-based Architectures. Lower Section: Hybrid
Architectures. ↓: Lower is better. ↑: Higher is better.

Method Knowledge
Abs
Rel ↓

Sq
Rel ↓ RMSE↓ RMSE

Log ↓ δ1 ↑ δ2 ↑ δ3 ↑

MonoDepth2 M 0.289 2.926 8.181 0.376 0.534 0.795 0.908
SCDepthV1 M 0.259 2.284 7.803 0.369 0.572 0.809 0.911
HRDepth M 0.353 3.719 9.007 0.455 0.452 0.703 0.853

SCDepthV3 M+D 0.321 2.897 9.223 0.432 0.436 0.741 0.887
DynaDepth M+I 0.320 3.307 8.600 0.424 0.493 0.747 0.878
SGDepth M+S 0.265 2.516 7.573 0.349 0.575 0.821 0.923

PackNet-SfM M+S 0.315 3.357 8.704 0.398 0.491 0.767 0.894
OursR M+S 0.236 1.994 7.266 0.326 0.608 0.855 0.939

LiteMono M 0.258 2.152 7.336 0.331 0.567 0.835 0.940
MonoViT M 0.212 1.759 6.717 0.289 0.663 0.881 0.954
OursT M+S 0.202 1.641 6.614 0.285 0.678 0.887 0.954
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Table 7: Detailed performance comparison of monocular depth estimation on the
KITTI Motion Blur test set. To ensure fairness in comparisons and avoid introducing
any corrupted samples, all the models mentioned above are trained on the KITTI Clear
training dataset. Upper Section: ResNet-based Architectures. Lower Section: Hybrid
Architectures. ↓: Lower is better. ↑: Higher is better.

Method Knowledge
Abs
Rel ↓

Sq
Rel ↓ RMSE↓ RMSE

Log ↓ δ1 ↑ δ2 ↑ δ3 ↑

MonoDepth2 M 0.242 2.209 7.613 0.343 0.613 0.833 0.926
SCDepthV1 M 0.334 3.530 8.972 0.462 0.492 0.728 0.848
HRDepth M 0.345 3.599 9.314 0.482 0.476 0.708 0.833

SCDepthV3 M+D 0.282 2.630 8.834 0.396 0.537 0.777 0.892
DynaDepth M+I 0.345 3.654 9.167 0.455 0.487 0.715 0.848
SGDepth M+S 0.259 2.305 7.886 0.371 0.578 0.811 0.909

PackNet-SfM M+S 0.291 2.725 8.649 0.402 0.519 0.770 0.894
OursR M+S 0.238 2.087 7.447 0.338 0.617 0.840 0.931

LiteMono M 0.252 2.094 7.555 0.345 0.582 0.825 0.926
MonoViT M 0.189 1.442 6.651 0.275 0.699 0.896 0.961
OursT M+S 0.183 1.416 6.645 0.272 0.710 0.899 0.961

Table 8: Detailed performance comparison of monocular depth estimation on the
KITTI Clear test set. Upper Section: ResNet-based Architectures. Lower Section: Hy-
brid Architectures. ↓: Lower is better. ↑: Higher is better.

Method Knowledge
Abs
Rel ↓

Sq
Rel ↓ RMSE↓ RMSE

Log ↓ δ1 ↑ δ2 ↑ δ3 ↑

MonoDepth2 M 0.117 0.957 4.953 0.195 0.875 0.958 0.980
SCDepthV1 M 0.118 0.870 4.964 0.195 0.860 0.957 0.982
HRDepth M 0.106 0.815 4.598 0.184 0.891 0.963 0.982

SCDepthV3 M+D 0.117 0.735 4.682 0.186 0.866 0.961 0.984
DynaDepth M+I 0.114 0.890 4.914 0.194 0.876 0.959 0.981
SGDepth M+S 0.117 0.930 4.897 0.195 0.874 0.958 0.980

PackNet-SfM M+S 0.116 0.872 4.970 0.198 0.868 0.956 0.980
OursR M+S 0.118 0.872 4.869 0.196 0.869 0.958 0.981

LiteMono M 0.113 0.910 4.874 0.193 0.882 0.960 0.980
MonoViT M 0.100 0.729 4.410 0.176 0.898 0.967 0.984
OursT M+S 0.105 0.796 4.515 0.181 0.894 0.964 0.982



Scent-Depth: Supplementary Material 7

Table 9: Detailed performance comparison of monocular depth estimation on the
DENSE Fog test set. To ensure fairness in comparisons and avoid introducing any
corrupted samples, all the models mentioned above are trained on the KITTI Clear
training dataset. Upper Section: ResNet-based Architectures. Lower Section: Hybrid
Architectures. ↓: Lower is better. ↑: Higher is better.

Method Knowledge
Abs
Rel ↓

Sq
Rel ↓ RMSE↓ RMSE

Log ↓ δ1 ↑ δ2 ↑ δ3 ↑

MonoDepth2 M 0.266 1.484 4.865 0.374 0.526 0.804 0.906
SCDepthV1 M 0.269 1.600 5.125 0.410 0.539 0.751 0.866
HRDepth M 0.262 1.402 4.707 0.366 0.533 0.797 0.920

SCDepthV3 M+D 0.257 1.568 5.087 0.380 0.578 0.788 0.892
DynaDepth M+I 0.271 1.589 5.191 0.408 0.519 0.776 0.891
SGDepth M+S 0.260 1.478 4.967 0.379 0.548 0.801 0.909

PackNet-SfM M+S 0.254 1.346 4.697 0.360 0.532 0.812 0.918
OursR M+S 0.240 1.262 4.567 0.342 0.580 0.834 0.924

MonoViT M 0.239 1.223 4.600 0.345 0.556 0.824 0.926
LiteMono M 0.325 1.922 4.863 0.383 0.422 0.727 0.926
OursT M+S 0.224 1.032 3.907 0.312 0.583 0.848 0.948

Table 10: Detailed performance comparison of monocular depth estimation on the
DENSE Rain test set. To ensure fairness in comparisons and avoid introducing any
corrupted samples, all the models mentioned above are trained on the KITTI Clear
training dataset. Upper Section: ResNet-based Architectures. Lower Section: Hybrid
Architectures. ↓: Lower is better. ↑: Higher is better.

Method Knowledge
Abs
Rel ↓

Sq
Rel ↓ RMSE↓ RMSE

Log ↓ δ1 ↑ δ2 ↑ δ3 ↑

MonoDepth2 M 0.274 1.554 4.962 0.381 0.517 0.792 0.901
SCDepthV1 M 0.266 1.570 5.118 0.396 0.537 0.765 0.882
HRDepth M 0.262 1.394 4.730 0.366 0.528 0.804 0.918

SCDepthV3 M+D 0.253 1.513 5.087 0.377 0.581 0.797 0.894
DynaDepth M+I 0.281 1.657 5.311 0.415 0.504 0.771 0.886
SGDepth M+S 0.252 1.413 4.912 0.372 0.563 0.806 0.911

PackNet-SfM M+S 0.256 1.370 4.765 0.365 0.533 0.811 0.913
OursR M+S 0.247 1.355 4.642 0.348 0.587 0.821 0.918

MonoViT M 0.237 1.280 4.767 0.354 0.564 0.822 0.914
LiteMono M+S 0.322 1.877 4.787 0.378 0.414 0.757 0.928
OursT M+S 0.224 1.083 4.046 0.321 0.571 0.841 0.941
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qualitative analysis but also enhances our understanding of the encoder’s opera-
tional nuances. Thus, Vt serves as a bridge, translating abstract numerical data
into a visual narrative that succinctly conveys the encoder’s learning dynamics
and its interpretative power over the input data.

Algorithm 1 Visualization of Encoder-Generated Features
Require: Ft: The set of features generated from image It by an encoder, where Ft[c]

represents the feature of channel c.
Ensure: Vt: The visualization of the encoder’s feature representations.

Initialize an empty list Linterp to hold interpolated features for visualization.
for each channel c in Ft do

Resize Ft[c] to a predefined shape using bilinear interpolation and add to Linterp.
end for
Ut ← Concatenate all features in Linterp along the feature dimension.
Flatten Ut spatially into a 2D array and transpose it, making features as rows.
Apply PCA to reduce the dimensionality of the transposed array to one dimension.
Compute the lower and upper bounds as the 5th and 95th percentiles of the PCA-
reduced array, respectively.
Clip the PCA-reduced array within these bounds.
Normalize the normalized array to the range [0, 255] and convert it to an unsigned
8-bit gray-scale image.
Reshape the scaled array back to the original shape of It to obtain the visualization
Vt.

H Detailed Feature Visualization Results

We provide representative feature visualization results in the main text. In the
supplementary material, we present feature visualizations in a broader range of
scenarios to demonstrate the generalizability of our feature interpretability in
Figure 1.

I Visualization of Depth

We visualize the estimated depth results on an image with a complex scene from
the KITTI test sequence as displayed in Figure 2, using different models including
MonoViT, LiteMono, HRDepth, and SGDepth. The visualizations show OursT
can identify the overhead bridge in dark areas for clear scenes, while experiencing
less scene interference compared to other methods.
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Fig. 1: Detailed visualization of intermediate feature maps. For features F (s)
t and F

(t)
t ,

yellow indicates high values. For predicted depth D̂t, purple denotes high values. We
provide a detailed description of the computation method for visual feature maps in
the supplementary materials.
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Fig. 2: Visualized depth comparison of OursT, MonoViT, LiteMono, HRDepth, and
SGDepth.
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