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1 Related Works

1.1 Unsupervised Domain Adaptation

Unsupervised Domain Adaptation (UDA) [12, 25] has been widely proposed to
address the domain shift problem. Adversarial learning methods, as in [5, 8, 12,
24, 39, 50], are a primary approach, focusing on aligning distribution discrep-
ancies between the source and the target domains. Another approach proposed
by [19, 35] introduces a discrepancy metric, which is used to minimize discrep-
ancies in both the source and target distributions. Generative methods [3,28,29]
have been utilized to tackle the domain shift by generating images that are in-
distinguishable between the source and target domains. In addition, [11,38] have
explored the utilization of cluster structure information to understand class re-
lationships between instances with the help of the labeled source data. More
recently, self-training methods [6, 7, 17, 27, 42, 49, 52] produce pseudo-labels for
the target data to transfer the target domain’s knowledge to the source model.
However, all these UDA approaches require access to both source and target
data during the adaptation.

1.2 Learning with noisy labels.

Noisy labels typically negatively impact the performance of deep neural networks
(DNNs) during training. Recent approaches [22, 23, 51] of learning with noise
labels have been proposed to mitigate the negative effect of noise labels.

To address this issue, most methods, such as using noise-robust loss [13, 44,
46,51] functions to minimize effect of noisy labels, estimating the noise-transition
matrix [14, 45], selecting clean samples from noisy data [16, 48], and label cor-
rection methods [1, 21, 32, 37, 47] that replace noisy labels with more reliable
labels, are proposed. In particular, the label correction methods have performed
better than other methods. Unsupervised Label Noise Modeling (ULNM) [1]
partitions data into noisy and clean samples by applying a beta mixture model
from the higher loss incurred by each sample. Similarly, DivideMix [21] employs
two networks to select samples with clean labels and applies semi-supervised
learning. MOIT [32] utilizes robust feature representation for noise detection,
using k-nearest neighbors to infer label distributions and distinguish clean and
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noisy data by comparing them with the ground truth. While previous meth-
ods of training with noisy labels have benchmarks based on the ground truth for
clean and noisy data, Source-Free Domain Adaptation (SFDA) is more challenge
setting due to the absence of the ground truth for clean and noisy data.

Moreover, most existing methods [1, 21, 32] rely on identifying false labels
within given neighbors structures. However, our proposed method partitions
clusters into the clean (i.e., close to cluster prototypes) and noisy (i.e., far from
cluster prototypes) regions by using cluster prototypes (i.e., centroids of clusters)
and employs distinct training strategies for each regions within the clusters.

2 Notation

In this section, we provide notations including symbols and brief descriptions for
our algorithm addressed in Sec. 3, as shown in Tab. 1. We subdivide notations
into 5 parts: Data, Augmentation, Architecture, Loss, General.

Symbol Description

Data

Dt Target domain data
xt Batch sampled from Dt

xcr Samples in clean regions from Dt

x̃t Mixup samples from Dt

Augmentation
Tw Weak augmentation
Ts Strong augmentation
Ts̄ Strong augmentation

Architecture

f(·) Source model
g(·) Encoder of f(·)
h(·) Classifier of f(·)
f̄(·) Momentum model
ḡ(·) Encoder of f̄(·)
h̄(·) Classifier of f̄(·)
θ Parameters of f(·)
θ̄ Parameters of f̄(·)

Loss

Lcr Loss for clean samples xcr

Lccp Cluster compactness loss
Ldiv Loss for regularization
Linst Instance-aware contrast loss
Lprt Prototype-aware contrast loss

Loverall Total loss

General

Qw Memory queue of wt

Qk Memory queue of kt
Pw Memory queue of f̄(Tw(xt))
µk Prototype for k-th cluster
S Similarity
pc Clean probability
α Threshold of pc
w̃t Mixup weight
Pprt Positive pairs for Lprt

Nprt Negative pairs for Lprt

Pinst Positive pairs for Linst

Ninst Negative pairs for Linst

Table 1: Notation Table
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Algorithm 1: CNG-SFDA algorithm
Input: Unlabeled target set Dt = {xi

t}Nt
i=1, source model f(·) = g(h(·)), source

encoder g(·), source classifier h(·) ; // Let ·||· denote the append
operation, C be the number of classes.

Output : updated θ
Initialization: Momentum model f̄(·) = h̄(ḡ(·)), f̄θ̄ = fθ
for epoch = 1 to MaxEpoch do

step1: Stacking Memory Queue
Qw, Qk, Pw ← [ ], [ ], [ ]
for iter = 1 to MaxIter do

xt ← batch sampled from Dt

wt = g(Tw(xt))
qt = g(Ts(xt))
kt = ḡ(Ts̄(xt))
p̄w = σ(f̄(Tw(xt)))
Qw, Qk, Pw ← Qw||wt, Qk||kt, Pw||p̄w

end
step2 : Introduce Clean Probability
µ = ||Qw · Pw/Pw||ℓ2 ← Calculate Cluster Prototype
S = Qw · µ/||Qw|| · ||µ|| ← Similarity features and all cluster prototypes
for iter ← 1 to MaxIter do

xt ← batch sampled from Dt

wt = g(Tw(xt))
qt = g(Ts(xt))
kt = ḡ(Ts̄(xt))
ps = σ(f(Ts(xt)))
pw = σ(f(Tw(xt)))

p̂
(i,c)
w = 1

K

∑K
j=1 p

(j,c)
w

ŷt = argmaxc p̂
(i,c)
w ; // Generates pseudo-labels

st = wt · µk/||wt|| · ||µk||
pc = exp(st)/exp(S)← clean probabilities of batch

step3 : Train Clean and Noise Regions
if pc > α then

xcr ← Samples in Clean Regions
Compute loss Lcr for xcr, ŷt
x̃t = λxi

t + (1− λ)xj
t ← mixed images

ỹt = λŷi
t + (1− λ)ŷj

t ← mixed pseudo-labels
w̃t = exp(λpic + (1− λ)pjc)← Mixup weight
Compute loss Lccp using w̃t for x̃t, ỹt
Compute loss Ldiv for ps
step4 : Contrastive Learning
c̄← class of ŷt
Pprt ← {qt, µc̄}
Nprt ← {qt, {µk ̸=c̄}Ck=1} ; // Filter µk with same class of qt
Compute loss Lprt for Pprt, Nprt

Pinst ← {qt, kt}, Ninst ← {qt, Qk}
Compute loss Linst for Pinst, Ninst

Update θ by minimizing Loverall using SGD optimizer
Update θ̄ by EMA of θ

end
end
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3 Algorithm

Algorithm 1 outlines a training procedure of CNG-SFDA. As detailed in the
methodology section of the main paper, CNG-SFDA algorithm comprises 4 dis-
tinct steps: step1 (stacking the memory queue), step2 (Distinguishing Clean
and Noisy Regions in Clusters), step3 (Training Strategy for Clean and Noisy
Regions), and step4 (Instance and Prototype-aware Contrastive Learning). In
particular, for online SFDA, we change a max epoch to 1 and activate the soft
voting for generating pseudo-labels once the memory queue reaches a certain
length.

4 Experiments

4.1 Implementation details.

In this section, we describe the implementation details. We categorize this sec-
tion into Training Source and Training Target (i.e., adaptation phase). For all
implementations, we use Pytorch [33] and follow AdaContrast implementations
∗ for a baseline method. For all training, we use 2 NVIDIA A6000 GPUs. Code
is here: https://github.com/hyeonwoocho7/CNG-SFDA.
Training Source For image classification tasks, we initialize the ResNet back-
bone with ImageNet-1K [10] pre-trained weights from the Pytorch model zoo.
We split the source dataset into training and validation sets in a ratio of 9:1. Fol-
lowing [4], we train the pretrained model for 10, 60, and 100 epochs for VisDA-C,
DomainNet-126, and PACS, respectively, using a consistent learning rate of 2e-4.
Additionally, we set a same batch size of 128 for all datasets.
Training Target We categorize this section into implementation details for
offline and online SFDA. As shown Tab. 1 augmentation part, we leverage 3
different augmentations. For all augmentations, we use Pytorch default imple-
mentations.
Offline SFDA In the offline SFDA phase, we conduct training for 30 and 15
epochs with a batch size of 128 for VisDA-C and DomainNet-126. For PACS,
we train the model with batch size 32 for 30 and 50 epochs in single-source and
multi-source settings, respectively. We use SGD optimizer with a momentum of
0.9, a constant learning rate of 2e-4, and weight decay of 1e-4 for all datasets.
Online SFDA For online adaptation, we set the epoch to 1 on all datasets since
the target data is seen to model during only inference. Other hyper-parameters
are the same as offline settings.

4.2 SFDA on DomainNet

Tab. 2 shows the performance of the online CNG-SFDA and other online SFDA
methods on DomainNet [34] in a multi-source setting. DomainNet is a large-scale
dataset with 345 classes, unlike DomainNet-126 which has 126 classes. As shown
in Tab. 2, CNG-SFDA shows competitive performance with the SOTA [43].

∗https://github.com/DianCh/AdaContrast
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Method clipart infograph painting quickdraw real sketch Avg.

ERM [40] 64.8 22.1 51.8 13.8 64.7 54.0 45.2
PL (ICMLW’13) [20] 65.0 19.0 50.3 4.21 54.4 54.2 41.2
BN (NeurIPS’20) [36] 64.5 15.6 50.6 11.8 63.9 53.9 43.4
Tent (ICLR’21) [41] 65.8 18.2 53.0 10.8 64.9 55.7 44.7
SHOT-IM (ICML’20) [43] 65.6 18.7 52.4 19.0 66.5 55.5 46.3
T3A (NeurIPS’21) [18] 64.8 22.1 50.9 19.4 65.9 54.0 46.2
ETA (ICML’22) [31] 65.1 19.4 52.7 18.2 65.9 55.5 46.1
LAME (CVPR’22) [2] 64.2 15.6 50.5 11.8 63.5 53.7 43.2
TSD (CVPR’23) [43] 66.1 24.1 52.8 18.2 68.5 56.7 47.7

CNG-SFDA (online) 64.6 21.4 57.1 14.9 69.9 54.0 47.0
Table 2: Compare classification accuracy (%) on DomainNet with other SFDA
methods (ResNet-50 Backbone).

5 Analysis

5.1 Feature visualization

Fig. 1 shows the feature distributions from the source model (referred to as
‘Source Only’), AdaContrast [4] method, and CNG-SFDA through t-SNE [26].
We observe that the feature distribution of CNG-SFDA has better cluster com-
pactness than that of other methods.

(a) Source Only (b) Adacontrast [4] (c) CNG-SFDA

Fig. 1: t-SNE of the feature distributions from ‘Source Only’, Adacontrast [4],
and CNG-SFDA on VisDA-C.

5.2 Model calibration

We consider that model calibration in SFDA enhances the reliability, robustness,
and interpretability of the adapted target model, making it a crucial aspect of
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Fig. 2: Model calibration analysis of AdaContrast [4] and CNG-SFDA on
VisDA-C.

deploying machine learning solutions in dynamic environments. In Fig. 2, we
compare the model calibration [9, 15, 30] for AdaContrast and CNG-SFDA on
VisDA-C. We divide the probability of the model into 10 bins and compute
the average accuracy in relation to the average confidence for each bin. The
more close the model’s outputs (blue bar) to y = x line, the better calibration
it has. As shown in Fig. 2, CNG-SFDA has better calibration than AdaCon-
trast. In addition, we use two intuitive statistics that measure calibration [9,30]:
expected calibration error (ECE) and maximum calibration error (MCE). The
more close ECE and MCE to zero, the better calibration the model has. CNG-
SFDA achieves 4.09(%) ECE and 1.47(%) MCE lower than AdaContrast’s.

5.3 Similarity distribution of Clean vs mix-up vs Noisy.

Fig. 3 presents the density distribution of similarity between clean, noisy, and
mix-up samples based on cluster prototypes on VisDA-C. We calculated this
similarity using the cosine similarity between each sample’s embedding and its
closest cluster prototype embedding. We observe that clean samples exhibit fea-
tures closer to the prototype, while noisy samples exhibit more distant features.
Notably, features of mix-up tend to be distributed between the clean and noisy
distributions. These findings support our hypothesis that mix-up features serve
as a bridge connecting clean and noisy features.

5.4 Comparative Analysis: Detecting Clean and Noisy Data

We conduct a comparative analysis on detecting clean and noisy data. To com-
pare the effectiveness of detecting clean and noisy data with other method, we
leverage accuracy, recall, and precision metrics. We compare CNG-SFDA with
MOIT [32] method which detects clean and noisy data using neighbors features.
Specifically, we measure the detection performance for noisy data from the source
model. As illustrated in Fig. 4, our method improves the detection performance
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Fig. 3: Similarity distribution of cluster prototype with Clean vs Noisy vs Mixup.

on VisDA-C, DomainNet-126, and PACS. Also, MOIT exhibits good perfor-
mance in the precision score, as it tends to capture less noise data. However, we
observe that our approach selects as many clean samples as possible, leading to
outstanding recall on all datasets.
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Fig. 4: Compare the performance of MOIT [32] and CNG-SFDA for detecting
clean and noisy samples on all datasets.

5.5 Component ablation of online SFDA

Tab. 3 shows the ablation results of each component for all datasets in the online
SFDA setting. ‘PL’ is a baseline method that uses the online pseudo labeling
proposed in [4]. As shown in Tab. 3, we observe improved performance in most
cases as we apply each component. This demonstrates the effectiveness of each
element of CNG-SFDA in the online SFDA setting.
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PL Lcr Lccp Ldiv Linst Lprt VisDA-C DomainNet PACS

✓ ✗ ✗ ✗ ✗ ✗ 83.3 62.6 70.2
✓ ✓ ✗ ✗ ✗ ✗ 82.7 64.5 70.8
✓ ✓ ✓ ✗ ✗ ✗ 86.5 63.8 71.6
✓ ✓ ✓ ✓ ✗ ✗ 86.6 64.2 73.5
✓ ✓ ✓ ✓ ✓ ✗ 86.1 66.3 74.0
✓ ✓ ✓ ✓ ✓ ✓ 86.8 66.9 74.4

Table 3: The effectiveness of each component all datasets is validated by clas-
sification accuracy (%).

5.6 Insensitivity of hyper-parameter

Fig. 5 presents the sensitivity analysis of different hyper-parameters for online
and offline SFDA, respectively. These results demonstrate the insensitivity of
CNG-SFDA to hyper-parameter tuning.
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Fig. 5: Sensitivity analysis of offline SFDA (Top) and online SFDA (Bottom)
with different hyper-parameters. Classification Accuracy (%) with K nearest
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