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1 Implementation Details

We utilize the geometry reconstruction and mesh processing part from the
LTM [1]. Leveraging the strong smoothness regularization [2], this method shows
consistently smooth surfaces on both ground and wall structures. Additionally,
due to the incorporation of contraction function [7], background regions are effec-
tively reconstructed. However, we do not utilize the optimization step, resulting
in a mesh surface that lacks detailed structures and often appears smoothed due
to the limited number of vertex. Our method is implemented using PyTorch [6]
and builds on Gaussian rasterization provided by the original 3DGS [5]. For
scene composition, we initially obtain the textured human mesh from Mixamo
and export the compositional mesh result from the Blender engine. Subsequently,
we employ our rasterization code to render the compositional scene using the
exported mesh composition.

2 Comparison to 2D Gaussian Splatting

Recently, a 2DGS [4] was released, showing remarkable performance in mesh re-
construction and novel view synthesis. In Table 1 and Table 2, we compare our
method with 2D GS in terms of rendering performance. Unlike approaches that
bind 3D splats to an underlying mesh, this research prioritizes aligning 2D Gaus-
sian splats with the underlying geometry without requiring prior 3D geometry.
This paper demonstrate that 2D Gaussian splats surpass 3D Gaussian splats in
representing geometry. Our Gaussian splats binding method can leverage the 2D
Gaussian splats representation to bind splats to a given mesh.

3 Additional Qualitative Comparisons

Supplementary material includes all rendering results on the test set, provided
as a downloadable zip file. To accommodate file size limitations (100mb for sup-
plementray material), we downscale the resolution of rendering images. In the
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Method Mesh Rendering Outdoor (PSNR ↑ / SSIM ↑ / LPIPS ↓)
Bicycle Garden Stump Mean

2DGS [4] O Splat 24.6 / 0.71 / 0.30 26.6 / 0.83 / 0.16 26.0 / 0.76 / 0.29 25.7 / 0.76 / 0.25
MeshGS (Ours) O Splat 24.4 / 0.71 / 0.26 26.8 / 0.85 / 0.12 25.8 / 0.74 / 0.25 25.7 / 0.77 / 0.21
MeshGS* (Ours) O Splat 24.9 / 0.75 / 0.25 26.8 / 0.86 / 0.12 26.3 / 0.76 / 0.22 26.0 / 0.79 / 0.20

Table 1: Quantitative Comparison on outdoor mip-NeRF 360 Dataset.
MeshGS* did not utilize any regularization techniques to tightly align Gaussian splats;
instead, it solely applied image loss for training.

Method Mesh Rendering Indoor (PSNR ↑ / SSIM ↑ / LPIPS ↓)
Room Counter Kitchen Bonsai Mean

2DGS [4] O Splat 30.8 / 0.91 / 0.22 28.1 / 0.89 / 0.22 30.1 / 0.92 / 0.14 31.3 / 0.93 / 0.25 30.1 / 0.91 / 0.19
MeshGS (Ours) O Splat 30.3 / 0.90 / 0.24 28.0 / 0.89 / 0.21 29.7 / 0.90 / 0.17 30.7 / 0.93 / 0.20 29.6 / 0.91 / 0.20
MeshGS* (Ours) O Splat 30.9 / 0.93 / 0.23 27.8 / 0.90 / 0.21 29.3 / 0.90 / 0.17 30.5 / 0.93 / 0.19 29.6 / 0.91 / 0.20

Table 2: Quantitative Comparison on indoor mip-NeRF 360 Dataset.
MeshGS* did not utilize any regularization techniques to tightly align Gaussian splats;
instead, it solely applied image loss for training.

manuscript, we show the mesh reconstruction results for Garden, Stump, and
Bicycle scenes (refer to Fig. 2, Fig.4, and Fig. 6) due to the limited space. we
visualize the results for the remaining scenes on both Mip-NeRF 360 dataset
and Deep Blending dataset. We present both the mesh reconstruction and ren-
dering outcomes for these scenes, depicted in Fig. 1 and Fig. 2, respectively.
Additionally, we show visualizations for the mesh reconstruction and rendering
results of the Playroom and Dr. Johnson scenes from the Deep Blending dataset,
showcased in Fig. 3 and Fig. 4, respectively.
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Fig. 1: Qualitative comparison between (a) Ours and (b) SuGaR [3]. Our method and
SuGaR show shading mesh and wireframe mesh extracted without texture, respectively.
In SuGaR, the dark grey regions denote empty areas where the mesh fails to represent
the scene. Compared to ours, SuGaR’s mesh inadequately captures background regions
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Scene (a) Ours (b) SuGaR (d) LTM(c) 3DGS
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Fig. 2: Qualitative Comparisons with Existing Methods. We visually compare
our method with SuGaR [3], 3DGS [5], and LTM [1]. Red arrows emphasize subtle
differences in rendering quality
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Fig. 3: Qualitative comparison between (a) Ours and (b) SuGaR [3]. Our method and
SuGaR show shading mesh and wireframe mesh extracted without texture, respectively.
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Fig. 4: Qualitative Comparisons with Existing Methods. We visually compare
our method with SuGaR [3], 3DGS [5], and LTM [1]. Red arrows emphasize subtle
differences in rendering quality.
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