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Fig.A: Comparison of CAC models evaluated on 1123.jpg from FSC-147
dataset. Both BMNet+ and CounTR exhibit a considerable difference in squared
error compared to LOCA.

1 Counting error of 1123.jpg on FSC-147 dataset

In Section 3.3 of the main paper, we demonstrate that images with a high object
count significantly impact MAE and RMSE scores. Specifically, we show that
most CAC models produce large counting errors for 1123.jpg (Figure A), which
is an outlier in this dataset.

2 Test-Time Normalization

We construct a variant of our MGCAC (denoted as MGCAC∗) by adopting test-
time normalization on MGCAC. Specifically, we utilize the divide-and-conquer
technique in [1], where each query image is cropped by M × M pieces if the
average reference to query area ratio is less than a threshold T . For each cropped
sub-image, we first interpolate it to the query’s original size followed by feeding
the resized image into the model. The predicted count of the entire image is the
sum of the predicted count of M2 cropped images. We set M = 8 and T = 0.0002.
As shown in Figure B, MGCAC∗ exhibits improvement on 1123.jpg (i.e. the
outlier with the largest object count from the test dataset) and achieves SOTA
on test MAE and test RMSE (cf. Table 2 in the main paper). Given the bias of
MAE and RMSE towards extremely large-count query images (cf. Section 3.3 in
the main paper), we demonstrate that our model is able to easily hack existing
metrics by applying Test-Time Normalization on large-count query images (e.g.,
1123.jpg). To provide a more balanced evaluation, we suggest utilizing metrics
like NAE or RMSE, which can better reflect the overall performance of the model
across the entire dataset.
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3 Model Architecture

In this section, we provide the details of our proposed MGCAC as shown in Fig-
ure D, which is another strong baseline candidate for CAC. Deviating from the
standard CAC pipeline that exclusively matches high-level features, the MGCAC
model follows MixFormer [2] architecture design, which simultaneously extracts
visual features from the reference images and augments query features by match-
ing a similarity map among the references and the query, and resulting in finer
matching results. We also aggregate features across model stages to capture the
nuance of multi-scale features. More explanations of specific components are
described as follows.

3.1 Extract-And-Match Module

To capture reference-specific features and enhance cross-branch interactions, we
adopt the MAM (Mixed-Attention Module) from [2]. As shown in Figure D(2),
both reference and query branches are first performed with convolutional pro-
jection to preserve spatial context. Then, the reference feature strengthens its
representation through self-attention, and the query branch captures the query’s
pixel-wise correlation through cross-attention with reference features. By refining
and matching within the same block, the model excels at shaping discriminative
features that generate robust cross-attention similarity maps. Unlike previous
CAC models that perform feature extraction separately on query and reference
and then interact through matching, MAM facilitates frequent cross-branch in-
formation exchange.

3.2 Multi-Scale Enhancement for Matching and Density Map
Estimation

After feature extraction and matching, most of the prior works adopt a sim-
ple density head consisting of several upsampling and convolution operations

Prediction: 619.08

MGCAC

Prediction: 2104.79

MGCAC*Target Class: Markers

Ground Truth: 3701

Fig. B: It shows the influence of applying test-time normalization on 1123.jpg in the
FSC-147 dataset using our MGCAC, where * indicates applying test-time normaliza-
tion.
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Fig. C: Qualitative Comparisons on Mosaic Dataset based on FSC-147. The
first column indicates the target classes, the second column displays queries with ground
truth annotated by red dots and the following columns present the predictions from
the respective CAC models (please kindly zoom in to better visualize the highlighted
regions of heat/response maps).

on single-scale feature maps and achieve acceptable performance. To better pre-
serve the information of fine features from early layers/stages across scales, we
respectively perform matching on features across stage 1, 2, and 3 of the model,
where the feature dimensions are decreased by half as the stage progresses. Then,
we utilize a U-Net-like expansion path as the density head to fuse query and
similarity-related features across scales. After fusing feature maps, we utilize
1 × 1 convolutions to compress multi-channel feature maps into a single final
density map as shown in Figure D(3).
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Fig.D: MGCAC Architecture. We employ a multi-stage extract-and-match module
from [2] and a density head as an additional strong CAC baseline candidate.

4 More Evaluation Results

4.1 Qualitative Comparisons on Mosaic Dataset

In Figure C, we also show qualitative comparisons of our MGCAC and recent
SOTA CAC models (e.g. LOCA and CounTR) on the proposed mosaic dataset.
LOCA [4] fails to distinguish the corresponding objects and localize all objects in
the queries. CounTR [1] either captures wrong objects (row 1, 2, and 4) or gives
inaccurate counts (row 3). In contrast, our MGCAC effectively localizes the right
objects as the one provided in the reference and gives accurate count predictions.
The results are consistent with Figure 2 in the main paper, which utilized real
image inputs. Therefore, our proposed mosaic dataset can effectively reflect the
performance of the model under multi-class scenarios of the real world, enabling
a more comprehensive evaluation of CAC models.

4.2 Cross-Dataset Generalization.

A strong CAC model should excel in counting objects on scenarios that differ
from the training dataset in terms of perspectives, scales, illumination, etc. To
evaluate the ability to generalize on other datasets, we train the proposed method
on the FSC-147 dataset and then evaluate on the CARPK testing set without the
use of fine-tuning on the CARPK training set. Specifically, since the CARPK
dataset mainly consists of car images, we remove the car category from the
FSC-147 dataset during the training stage. In Table A, our models outperform
the non-fine-tuned baselines, which demonstrates MGCAC’s generalizability in
diverse counting scenarios.
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4.3 Impact of Number of References Images (i.e. n)

We investigate our model performance in relation to the number of reference
images, where n ≤ 3. In Table B, the results indicate that using our training
protocol, our robust model architecture effectively captures reference represen-
tative features and improves performance as the number of reference images
increases.

Table A: Cross-dataset evaluation results compared with other SOTA models where
‘fine-tuned’ means the model is further fine-tuned using the CARPK training data.

Model Fine-tuned MAE RMSE
BMNet [3] ✓ 8.05 9.7
BMNet+ [3] ✓ 5.76 7.83
CounTR [1] ✓ 5.75 7.45
BMNet [3] × 14.61 24.60
BMNet+ [3] × 10.44 13.77
LOCA [4] × 9.97 12.51
MGCAC (Ours) × 6.41 8.81

Table B: Evaluation results of MGCAC using different numbers (i.e. n) of reference
images on FSC-147.

n
VAL TEST

MAE RMSE NAE SRE MAE RMSE NAE SRE
1 17.78 68.9 0.19 3.05 14.55 111.04 0.16 2.79
2 12.80 58.83 0.13 2.34 11.03 107.09 0.15 4.24
3 11.00 51.42 0.12 2.05 10.46 96.60 0.16 6.17
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Fig. E: More real-world examples of MGCAC. The references are annotated by
bounding boxes.
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