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Fig. S1: The overview of our 2D and 3D segmentation models. In 3D models (and U-
Mamba baselines), we used max pooling at the start of U-Mamba to massively reduce
the number of computations. These illustrations serve as a conceptual representation.
Following [34, 38], the number of building blocks differs across datasets. The detailed
configurations are shown in Tab. 1.

S1 More Analysis

Impact of Each Component. We hypothesize that G-VMamba is more robust
than L-VMamba in handling “long” sequences, where the forgetting of distant
tokens and global context in Mamba is more severe. Therefore, the global tokens
from GTX are highly crucial for recalling overall information of long sequences.
This hypothesis was validated by our experiments in Table 6, where the impact
of G-VMamba was more pronounced on BraTS 3D inputs than L-VMamba.
One can observe that 3D scans from BraTS produce 8.5 times longer input
sequences compared to the 2D images from EndoVis. Compared to G-VMamba,
L-VMamba is expected to be good at learning local information and fine-grained
details, which should be crucial for accurate segmentation of numerous classes
in EndoVis 2D images. This might explain why L-VMamba showed stronger
performance on the Endoscopy dataset.
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Fig. S2: The activation of features in L-VMamba and G-VMamba when running on
the test set of the Endoscopy dataset

Concatenation of Local and Global Tokens. In general, the “Inter-
leaved” strategy showed the best performance. This is intuitively reasonable
because it keeps reminding the SSM module of the global context, which re-
duces the possibility of forgetting information due to the sequential nature of
Mamba. Although we applied concatenation strategies to global tokens, similar
benefits could be observed when mixing prediction tokens between local tokens,
as reported in [50,59].

S2 Limitations and Broader Impact

Limitations. Firstly, the Mamba block in our LoG-VMamba may result in
exploding gradients during training, due to the inherent recurrent nature of SSM.
When such issues happen, it is recommended to lower the learning rate. Secondly,
as our study focuses on the problem of medical image segmentation, we did not
verify the effectiveness of the proposed LoG-VMamba module on natural images
or in other vision tasks such as image classification. Lastly, the evaluation of
this approach could be broadened by validating on multiple different anatomical
regions or comparing to a wider range of deep learning baselines.

Broader Impact. The proposed LoG-VMamba is a generic neural module
that can be inserted into different architectures and applied on different vision
tasks, e.g., semantic segmentation, image classification, or vision-language multi-
modal learning. It has no direct negative social impact. The potential malicious
uses of LoG-VMamba as a general-purpose neural module are beyond the scope
of our study.
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Table S1: Performance comparisons on the BraTS test set for each class. The best
results are highlighted in bold while the second-best ones are underlined.

Method
Dice score (%) ↑ HD95 (mm) ↓

ET TC WT Avg ET TC WT Avg

UNet3D [27] 83.1±0.2 86.1±0.3 90.4±0.2 86.5±0.1 3.8±0.4 5.9±0.3 6.5±0.6 5.4±0.4

nnUNet [25] 84.1±0.3 87.2±0.5 91.3±0.1 87.5±0.3 3.3±0.5 5.7±0.6 5.5±0.3 4.8±0.4

UNETR [18] 82.3±0.2 82.0±0.4 90.0±0.1 84.8±0.2 4.0±0.3 7.4±0.2 6.2±0.4 5.9±0.2

Swin-UNETR [17] 84.1±0.2 85.7±0.4 90.9±0.1 86.9±0.2 3.7±0.3 6.4±0.2 6.0±0.2 5.4±0.2

NestedFormer [53] 83.5±0.1 85.4±0.1 91.2±0.1 86.7±0.1 4.4±0.4 7.4±0.4 6.6±0.4 6.1±0.4

EoFormer [45] 82.5±0.2 84.8±0.4 91.3±0.0 86.2±0.2 3.7±0.2 6.4±0.4 5.9±0.3 5.3±0.2

U-Mamba-Bot [38] 84.1±0.2 87.0±0.3 91.5±0.1 87.5±0.2 2.9±0.1 5.0±0.3 5.0±0.2 4.3±0.2

U-Mamba-Enc [38] 83.7±0.1 86.2±0.2 91.2±0.1 87.0±0.1 3.1±0.2 5.0±0.2 5.1±0.1 4.4±0.1

SegMamba [52] 85.0±0.2 86.7±0.3 91.2±0.1 87.6±0.2 3.2±0.3 5.8±0.4 5.2±0.1 4.7±0.2

Ours 84.7±0.2 87.9±0.3 91.6±0.1 88.1±0.1 2.4±0.1 4.5±0.1 5.0±0.2 4.0±0.0

Table S2: Performance comparisons on the ACDC test set for each class. The best
results are highlighted in bold while the second-best ones are underlined.

Method
Dice score (%) ↑ HD95 (mm) ↓

RV MYO LV Avg RV Myo LV Avg

UNet3D [27] 90.2±0.1 89.3±0.1 93.3±0.1 90.9±0.0 1.3±0.0 1.1±0.0 1.2±0.0 1.2±0.0

nnUNet [25] 91.4±0.0 89.9±0.0 94.3±0.1 91.9±0.0 1.2±0.0 1.0±0.0 1.3±0.2 1.2±0.1

UNETR [18] 85.0±0.2 84.7±0.2 89.9±0.2 86.5±0.1 2.8±0.1 2.1±0.1 2.6±0.1 2.5±0.1

Swin-UNETR [17] 87.9±0.2 87.5±0.2 92.1±0.3 89.2±0.2 2.8±0.3 1.4±0.1 2.3±0.2 2.2±0.2

NestedFormer [53] 89.2±0.1 88.3±0.1 92.9±0.1 90.1±0.1 1.6±0.2 1.6±0.4 2.5±0.6 1.9±0.3

EoFormer [45] 89.9±0.0 89.8±0.0 93.7±0.2 91.1±0.1 1.3±0.0 1.0±0.0 1.2±0.1 1.2±0.0

U-Mamba-Bot [38] 91.6±0.1 90.2±0.0 94.0±0.1 91.9±0.1 1.2±0.0 1.3±0.2 1.4±0.2 1.3±0.1

U-Mamba-Enc [38] 91.1±0.4 89.9±0.3 93.9±0.2 91.6±0.3 1.2±0.0 1.0±0.0 1.1±0.0 1.1±0.0

SegMamba [52] 89.6±0.2 89.0±0.1 93.6±0.0 90.7±0.1 1.3±0.0 1.1±0.0 1.2±0.1 1.2±0.0

Ours 92.0±0.1 90.3±0.0 94.2±0.1 92.2±0.0 1.2±0.0 1.0±0.0 1.1±0.0 1.1±0.0


