
Supplementary material for BootsTAP:
Bootstrapped Training for Tracking-Any-Point

Carl Doersch1, Pauline Luc1, Yi Yang1, Dilara Gokay1, Skanda Koppula1,
Ankush Gupta1, Joseph Heyward1, Ignacio Rocco1, Ross Goroshin1, João

Carreira1, and Andrew Zisserman1,2

1 Google DeepMind
2 VGG, Department of Engineering Science, University of Oxford

1 Contents

The supplementary material consists of this document as well as an html file,
which has been published at https://bootstap.github.io/. The document
contains:

– Overall summary of the approach in Sec. 2.
– Qualitative visualizations of results on NIST Gears in Sec. 3.
– Higher resolution and some further data improvements, including bugfixes

for the Kubric data loader and longer clips in Sec. 4, resulting in a model
which outperforms the version in our paper and will be used for the public
release. This version is too expensive to ablate properly and contains some
minor engineering fixes, so in order to ensure all of the main-paper results
were comparable, we did not use it as the basis for our experiments there,
even though it achieves slightly better performance.

– Results with bootstrapping the causal version of TAPIR in Sec. 5.
– Results on the Perception Test point tracking challenge in Sec. 6.
– Implementation details, including details of transformations in Sec. 7.1, train-

ing details in Sec. 7.2, and details on experiments which fine-tune on Libero
in Sec. 7.3.

– Comparison of a 3D ConvNet backbone versus a 2D ConvNet backbone in
Sec. 8.

– More detailed description of the evaluation datasets in Sec. 9.

Our webpage includes video visualizations, including:

– Video visualizations of densely tracked points on NIST gears, comparing
TAPIR and BootsTAPIR.

– Video visualizations of densely tracked points on Libero, comparing TAPIR,
BootsTAPIR, and BootsTAPIR finetuned on Libero.

– Video visualizations of tracked points on TAP-Vid DAVIS and RoboTAP,
comparing TAPIR, BootsTAPIR, and ground truth.

To ensure reproducibility, we release an open-source implementation of
BootsTAPIR along with a pretrained model at https://github.com/google-
deepmind/tapnet.

https://bootstap.github.io/
https://github.com/google-deepmind/tapnet
https://github.com/google-deepmind/tapnet


2 C. Doersch et al.

2 Summary of the approach

We summarize notation and computation of our self-supervised loss in Algo-
rithm 1.

Algorithm 1 BootsTAP self-supervised loss. Notation:
U(D) refers to the uniform distribution over domain D;
we denote queries as Q = (q, t) where q is x/y coordinates and t is a frame index.
In a slight abuse of notation, we call Φt the transformation and the mapping that
transforms coordinates and leaves other model outputs unchanged.
Require:

X – video of shape T ×H ×W × C
f – model
Θ, ξ – student parameters, teacher parameters
A,DΦ – distribution over augmentations, distribution over transformations
V 7→ DV – mapping that maps a set of points V to a distribution DV over V
δ, δcycle – threshold values for uncertainty target definition and cycle-consistency
filtering criterion
d(·, ·) – distance function

Uniformly sample teacher query points Q1 ∼ U([0, H)× [0,W )× J0, T − 1K).
Sample augmentation a ∼ A and a frame-wise affine transformation Φ = {Φt}t ∼ DΦ.
Augment and transform each frame to form X ′: ∀t,X ′

t ← resampling(a(Xt), Φt).
For each query point Q1:

Predict tracks and occlusions with teacher model: {p̂T [t], ôT [t]}t ← f(X,Q1; ξ).
Derive pseudo-labels from teacher predictions with:

pT [t] = p̂T [t] ; oT [t] = 1(ôT [t] > 0); uT [t] = 1(d(pT [t], p̂S [t]) > δ)

Calling V the set of visible points along the teacher trajectory,
sample Q2 = (q2, t2) ∼ DV .
Transform query points: Q′

2 ← (Φt2(q2), t2).
Predict tracks with the student model and transform predicted coordinates with

the inverse of Φt: {p̂S [t], ôS [t], ûS [t]}t ← Φ−1
t (f(X ′, Q′

2;Θ)).
Compute masks used to filter out loss terms (when t1 and t2 differ):

mcycle = 1 (d(p̂S [t1], q1) < δcycle) ∗ 1 (ôS [t1] ≤ 0)

Compute the loss:

LSSL = mcycle ∗
1

T

∑
t

ℓtssl

where ℓtssl is the self-supervised TAPIR loss term for t.

3 Results on NIST Gears

Figure 1 further illustrates improvements on the RoboCAT-NIST. Due to the
lack of ground truth, sample a grid of points on the red pixels for RoboCAT-



BootsTAP 3

Fig. 1: Comparison: TAPIR vs. BootsTAPIR on the real RoboCAT-NIST dataset.
Since we lack ground truth, we show the TAPIR and the BootsTAPIR predictions in
Rainbow tail style side-by-side. On NIST, BootsTAPIR works more consistently on
location prediction. Note how points that were originally predicted as occluded are
now visible.

NIST. We display a few examples comparing the predicted tracks between the
two models. As these are rigid objects, we expect the points to move consistently
within each gear; deviations from this are errors. Due to the lack of texture
on the gears and the nontrivial domain gap, the original TAPIR trained on
Kubric works poorly here, with many jittery tracks and severe tracking failures.
This is particularly bad for points that are close to occlusion or out of image
boundary. The bootstrapped model fixes many of these failures: the tracks are
much smoother and occlusion predictions become much more accurate. Results
are comparable on Libero, although the motions there are more complicated and
unsuitable for a static figure; see webpage for video visualizations.

4 Higher Resolution and Data Improvements

The original TAPIR data loader, which we used as the basis for our experiments,
recently fixed a minor bug that leads to slight performance improvements. Specif-
ically, recall that the data augmentations used for the Kubric dataset include a
random axis-aligned crop. The image cropping mechanism was not pixel-aligned
with the transforms used for points, leading to an almost imperceptible error in



4 C. Doersch et al.

Table 1: Comparison of performance on the TAP-Vid datasets for the released version
of BootsTAPIR. Fix refers to the bugfix to coordinates. Snap refers to the snap-to-
occluder bias in the training data. Data refers to extra training data which has longer
clips and higher resolution.

TAP-Vid-Kinetics TAP-Vid-DAVIS TAP-Vid-RGB-Stacking
Method AJ ↑ < δxavg ↑ OA ↑ AJ ↑ < δxavg ↑ OA ↑ AJ ↑ < δxavg ↑ OA ↑

CoTracker [5] 57.3 70.6 87.5 64.8 79.1 88.7 65.9 80.6 85.0
Tuned TAPIR+fix 60.4 72.5 88.6 64.7 76.6 89.6 70.0 82.1 89.9
Tuned TAPIR+fix+snap 59.6 71.9 88.8 63.8 75.9 89.9 67.1 80.3 87.8

BootsTAPIR 61.4 74.2 89.7 66.2 78.1 91.0 72.4 83.1 91.2
BootsTAPIR+fix 61.4 74.5 89.4 66.5 78.5 90.8 75.9 85.7 93.8
BootsTAPIR+fix+snap 61.3 74.7 89.1 67.1 78.9 91.2 75.7 85.7 93.4
BootsTAPIR+fix+snap+data 62.5 74.8 89.5 67.4 79.0 91.3 77.4 86.7 93.2

the track locations. Fixing this bug leads to an improvement in performance for
the original TAPIR model, but surprisingly has relatively little effect on Boot-
sTAP performance. However, we find that the reason isn’t because BootsTAP
compensates for the bug, but rather, because the bug creates a bias toward track-
ing foreground objects (the tracks tend to be slightly expanded relative to the
underlying objects). We find we can replicate this bias by altering query points
that are very near occlusion edges (1 pixel away) to track the foreground object
rather than the background, which we call the “snap to occluder” technique. See
Section 7.4 for details.

To further tune performance, we also trained on higher-resolution clips, and
also longer clips, as we find these improve generalization for real-world applica-
tions with longer or higher-resolution videos. To implement this, we add more
‘tasks’ with different data shapes, using the same multi-task framework (i.e., sep-
arate optimizers) as described above. Specifically, one extra task uses 512× 512
Kubric clips (24 frames), trained using the same losses. We use the hierarchi-
cal refinement approach described in the original TAPIR paper, wherein the
initialization and one refinement pass is performed at 256 × 256, and then a
further refinement pass is performed at 512 × 512. We also use an analogous
high-resolution self-supervised task, which also uses 24-frame, 512× 512 videos
from the same real-world dataset. Finally, we add 150-frame, 256× 256 videos,
this time at 30 frames per second.

Tables 1 and 2 show our results. Note that CoTracker implemented its own
data augmentation algorithms and is not affected by the same bug. We see
that “snap to occluder” harms TAPIR performance, but improves BootsTAP
performance. One possible interpretation is that the snapping is compensating
for a particular bias in the bootstrapping toward tracking background. This
may be because background is easier to track, especially relative to thin ob-
jects. In a bootstrapping framework, the model’s reliable predictions that follow
background become self-reinforcing, whereas unreliable predictions for thin fore-
ground objects, are not. Therefore, they tend to get lost over time. Finding more
principled solutions to this issue is an interesting area for future work.



BootsTAP 5

Table 2: Comparison of performance under query-first metrics for Kinetics, TAP-Vid
DAVIS, and RoboTAP (standard for this dataset).

TAP-Vid-Kinetics TAP-Vid-DAVIS RoboTAP
Method AJ ↑ < δxavg ↑ OA ↑ AJ ↑ < δxavg ↑ OA ↑ AJ ↑ < δxavg ↑ OA ↑

CoTracker [5] 48.7 64.3 86.5 60.6 75.4 89.3 54.0 65.5 78.8
Tuned TAPIR+fix 53.3 66.0 85.1 58.9 71.6 86.4 67.3 78.4 90.0
Tuned TAPIR+fix+snap 52.5 65.3 85.5 58.3 71.1 87.7 66.4 77.3 90.5

BootsTAPIR 54.6 68.4 86.5 61.4 73.6 88.7 64.9 80.1 86.3
BootsTAPIR+fix 54.7 68.5 86.3 61.6 74.1 89.0 65.7 80.5 87.2
BootsTAPIR+fix+snap 54.5 68.8 86.3 61.8 74.3 89.1 63.5 81.1 84.2
BootsTAPIR+fix+snap+data 55.8 68.8 86.6 62.4 74.6 89.6 69.2 81.3 89.5

Table 3: Comparison of performance for high-resolution setting.

TAP-Vid-Kinetics TAP-Vid-DAVIS
Method AJ ↑ < δxavg ↑ OA ↑ AJ ↑ < δxavg ↑ OA ↑

BootsTAPIR 62.5 74.8 89.5 67.4 79.0 91.3
BootsTAPIR+hires 63.7 76.0 88.4 70.2 81.2 91.2

Regardless, the extra training data leads to a non-trivial boost in perfor-
mance. Note that, for tables 1 and 2, all evaluation videos are still at 256× 256,
and unlike many prior methods we do not upsample them before creating the
feature representation. To assess the impact of increased evaluation resolution,
we also performed evaluation on 512× 512 videos. Table 3 shows results. We see
that performance improves by 1.2% on Kinetics and 2.8% on DAVIS, the best
reported performance on this dataset by a wide margin. Surprisingly, we found
that further resolution at test-time did not improve results, suggesting another
interesting area for future work.

5 Causal model

RoboTAP [10] pointed out that point tracking can be very useful in an online
setting, e.g. when used as a signal to control agents in real time. It remains
straightforward to extend BootsTAPIR to the online setting: the only temporal
dependency of the model is in the 1D convolutions in the iterative refinements,
so these can be directly converted into causal convolutions to create a causal
model. We trained this model using the full training setup for the release model,
including the extra high-resolution, long-clip data. Table 4 shows results. We see
an overall 4.6% improvement on Kinetics and a 3.0% improvement on DAVIS,
in both cases using the query-first evaluation procedure.

6 Perception test

We also perform experiments on the point tracks in the Perception Test [8] vali-
dation set, a challenging dataset of point tracks annotated on videos of unusual



6 C. Doersch et al.

Table 4: Causal model performance.

TAP-Vid-Kinetics q_first TAP-Vid-DAVIS q_first
Method AJ ↑ < δxavg ↑ OA ↑ AJ ↑ < δxavg ↑ OA ↑

Causal TAPIR 51.5 64.4 85.2 56.7 70.2 85.7
Causal BootsTAPIR 55.1 67.5 86.3 59.7 72.3 86.9

Table 5: Performance on Perception Test relative to TAPIR.

Method Overall Static Dynamic

TAPIR 55.7 57.4 46.3
BootsTAPIR 59.6 61.3 49.7

situations filmed by participants. Results are shown in Table 5; we see a similar
magnitude gap over prior results.

As a final note, we performed informal benchmarking of our model using
an A100 and the latest JAX compiler. We found that after compilation, Boot-
sTAPIR can perform inference of 10, 000 points on a 256×256, 50-frame video in
5.6 seconds. Furthermore, the causal model can track 400 points on a 256× 256
video at 30.1 frames per second.

7 Implementation details

7.1 Distribution over transformations

We design transformations of the inputs to enforce equivariance of the predic-
tions with realistic spatial transformations. At a high level, we intend for the
transformations to mimic the effects of additional, simple and plausible cam-
era motion and zooming on the video. Hence, our transformations should vary
smoothly in time; they should cover a reasonable ratio of the original video
content; and aspect ratio should be roughly preserved.

We define a family of frame-wise affine transformations that has these prop-
erties, and a procedure to sample these randomly. Essentially, we sample top-left
crop coordinates and crop dimensions for each frame in the video; where coordi-
nates and dimensions are computed as interpolations between values sampled for
the start and end frames from a distribution that achieves the desired coverage
and aspect ratios.

More formally, we first sample a pair of spatial dimensions (H0,W0) for the
start frame as follows. We sample an area A uniformly over [0.6, 1.0]. Next we
sample values a1, a2 ∼ U([A, 1]) and derive random height value by averaging
them h = a1+a2

2 and width value w = A
h ; and finally, we multiply these values

by the input’s original shape (H,W ). This gives us a pair of spatial dimensions
biased towards aspect ratios close to 1, and covering an area between 60% and



BootsTAP 7

100% of the original input. We proceed the same way to sample a pair of spatial
dimensions(HT−1,WT−1) for the end frame.

Next, we uniformly sample a pair of top-left corner coordinates (Cx
0 , C

y
0 ) for

the start frame, such that a crop of dimensions (H0,W0) can be extracted within
the frame. We proceed the same way to sample a pair of spatial coordinates
(Cx

T−1, C
y
T−1), given (HT−1,WT−1), for the end frame.

We then interpolate linearly on one hand between the start and end spatial
dimensions; and on the other hand between the start and end top-left corner
coordinates. Let t ∈ {0, ..., T −1} be a frame index. Calling αt =

t
T−1 , we define:

ht = (1− αt) ∗H0 + αt ∗HT−1 (1)
wt = (1− αt) ∗W0 + αt ∗WT−1 (2)
cxt = (1− αt) ∗ Cx

0 + αt ∗ Cx
T−1 (3)

cyt = (1− αt) ∗ Cy
0 + αt ∗ Cy

T−1. (4)

This gives us parameters of scaling parameters (ht, wt) and translation parame-
ters (cxt , c

y
t ) vary linearly over time. Finally, our frame-wise affine transformations

Φ = {Φt}t are defined as follows:

∀t, Φt : (x, y) 7→
(wt

W
∗ x+ cxt ,

ht

H
∗ y + cyt

)
, (5)

We refer to the distribution resulting from our sampling procedure as DΦ. Given
a query point coordinates Q = (q, t) and input frames {Xt}t, the corresponding
transformation is applied with:

Q′ = (Φt(q), t); ∀t,X ′
t = resample(Xt, Φt), (6)

where resample(·, Φt) consists in scaling its input frame to resolution (ht, wt)
using bilinear interpolation and placing it within a zero-valued array of shape
(H,W ) such that its top-left corner in the array is at coordinates (cxt , c

y
t ). We

note that in our approach, this transformation is performed after augmenting
each frame, i.e. on a(Xt).

7.2 Training details

We train for 200,000 iterations on 256 nVidia A100 GPUs, with a batch size
of 4 Kubric videos and 2 real videos per device. The extra layers consist of 5
residual blocks on top of the backbone (which has stride 8, 256 channels), each
of which consists of 2 sequential 3 × 3 convolutions with a channel expansion
factor of 4, which is then added to the input. We use a cosine learning rate
schedule with 1000 warmup steps and a peak learning rate of 2e-4. We found it
improved stability to reduce the learning rate for the PIPs mixer steps relative
to the backbone by a factor of 5. We keep all other hyperparameters the same
as TAPIR.



8 C. Doersch et al.

7.3 Libero finetuning

We compare results on Libero, using the gripper view, which contains large and
difficult motions. Qualitative results show that BootsTAP trained on internet
videos as described improves results substantially. However, since there’s a large
domain gap between Libero data and internet videos, it’s natural to ask whether
performance can be improved by further self-supervised training on the Libero
dataset.

We use the full set of demonstrated trajectories in the dataset for all tasks,
again using only the gripper view. We begin with the model trained as described
in the main paper, and then further train it for another 50K steps using three
tasks jointly: Kubric, internet videos, and Libero videos, again using separate
optimizers for each and summing updates across tasks. We use an update weight
of 0.2 for both self-supervised tasks, and keep all other parameters the same
between Libero and the internet video tasks. We see that this approach further
improves results despite having no labels: the model can track with surprisingly
high fidelity over large changes in scale and viewpoint. See the webpage for
visualizations.

7.4 Snap-to-occluder

We aim to slightly modify the training objective to bias TAPIR to track fore-
ground objects rather than background, to counteract the tendency of boot-
strapped models to track background. The Kubric data loader works by sam-
pling query pixels randomly (biased toward objects), and then computing the
full track by back-projecting into the relevant object’s local coordinate system.
We first modify the procedure by preventing the model from sampling pixels
on the ’back side’ of an occlusion boundary: this is defined as any pixel with
a neighboring pixel (within a 3x3 square) which is less than 95% of the pixel’s
depth. After tracking points, we identify query points that are on the ’front side’
of an occlusion boundary: that is, any neighboring pixel which is more than 105%
of the depth of the query point. If such pixels exist, with 50% probability we
randomly choose one such pixel and replace the query point with it. Therefore,
in a small fraction of cases, the model will receive a query point on the back-
ground but need to track the foreground object instead. We did not use “snap to
occluder” in any experiments in the main paper, but only in the high-resolution
release version, and don’t claim it as a contribution of our paper.

8 Comparison with and without a 3D ConvNet Backbone

Recall that TAPIR extracts features using a ResNet, with a final feature map
of dimension 256 at stride 8 (although it uses an earlier feature map as well at
stride 4). The architecture is similar to a ResNet-18, and therefore has relatively
little capacity to learn about the full diversity of objects in the world. Therefore,
we add extra capacity: 5 more ResNet layers consisting of a LayerNorm, a 3× 3



BootsTAP 9

Table 6: Architectures. We compare a 2D backbone and a 3D backbone using Tem-
poral Shift Modules (TSM) to aggregate information locally over time.

TAP-Vid-DAVIS strided TAP-Vid-Kinetics query_first
AJ ↑ < δxavg ↑ OA ↑ AJ ↑ < δxavg ↑ OA ↑

2D ConvNet Backbone 66.2 78.1 91.0 54.6 68.4 86.5
3D ConvNet Backbone 66.3 78.4 90.7 54.0 68.0 85.0

convolution, followed by a GeLU, followed by another 3 × 3 convolution which
is added to the input of the layer. Our full model applies the feature extractor
independently on every frame, meaning that the model cannot use temporal cues
for feature extraction. Is this choice optimal? Intuitively, we might expect motion
to provide segmentation cues that could enable better matching. Therefore, we
develop an alternative model which adds a simple 3D ConvNet into the backbone:
specifically, we convert the first convolution of each residual block layer into a
3× 3× 3, giving the features a temporal receptive field of 21 frames.

We report results Table 6. We observe that this yields a slight performance
increase on TAP-Vid-DAVIS (strided evaluation), and in particular, slightly im-
proves the position accuracy, although it harms occlusion accuracy. However, it
significantly degrades performance on Kinetics (query_first). It’s possible that
the model struggles more with the cuts or camera shake present in Kinetics.
Hence, we keep a 2D backbone for the final model, although the optimal model
may depend on the desired downstream application.

9 Evaluation Datasets

TAP-Vid-Kinetics contains videos collected from the Kinetics-700-2020 vali-
dation set [2] with original focus on video action recognition. This benchmark
contains 1K YouTube videos of diverse action categories, approximately 10 sec-
onds long, including many challenging elements such as shot boundaries, multiple
moving objects, dynamic camera motion, cluttered background and dark lighting
conditions. Each video contains ∼26 tracked points on average, obtained from
careful human annotation.
TAP-Vid-DAVIS contains 30 real-world videos from DAVIS 2017 validation
set [9], a standard benchmark for video object segmentation, which was extended
to TAP. Each video contains ∼22 point tracks using the same human annotation
process as TAP-Vid-Kinetics.
TAP-Vid-RGB-Stacking contains 50 synthetic videos generated with Kubric [4]
which simulate a robotic stacking environment. Each video contains 30 annotated
point tracks and has a duration of 250 frames.
RoboTAP contains 265 real world Robotics Manipulation videos with on aver-
age ∼272 frames and ∼44 annotated point tracks per video [10]. These videos are
even longer, with textureless and symmetric objects that are far out-of-domain



10 C. Doersch et al.

for both Kubric and the online lifestyle videos that we use for self-supervised
learning.
RoboCAT-NIST is a subset of the data collected for RoboCat [1]. Inspired
by the NIST benchmark for robotic manipulation [6], it includes gears of vary-
ing sizes (small, medium, large) and a 3-peg base, introduced for a systematic
study of insertion affordance. All videos are collected by human teleoperation.
It includes robot arms operating and inserting gears, which are a particularly
challenging case due to the rotational symmetry and lack of texture. In this
work, we processed videos to 64 frames long with 222 × 296 resolution. This
dataset is mainly for demonstration purpose, there are no human groundtruth
point tracks.
Libero [7] is a dataset where point tracking has already proven useful for robotic
manipulation [11]. It includes demos of a human-driven robot arm performing a
wide variety of tasks in a synthetic environment, intended for use in imitation
learning. Sequences are variable length at 128×128 resolution and has no ground
truth tracks.

9.1 Evaluation metrics

We use three evaluation metrics same as proposed in [3]. (1) < δxavg is the av-
erage position accuracy across 5 thresholds for δ: 1, 2, 4, 8, 16 pixels. For a
given threshold δ, it computes the proportion of visible points (not occluded)
that are closer to the ground truth than the respective threshold. (2) Occlu-
sion Accuracy (OA) is the average binary classification accuracy for the point
occlusion prediction at each frame. (3) Average Jaccard (AJ) combines the
two above metrics and is typically considered the target for this benchmark.
It is the average Jaccard score across the same thresholds as < δxavg. Jaccard
at δ measures both occlusion and position accuracy. It is the fraction of ‘true
positives’, i.e., points within the threshold of any visible ground truth points,
divided by ‘true positives’ plus ‘false positives’ (points that are predicted visible,
but the ground truth is either occluded or farther than the threshold) plus ‘false
negatives’ (groundtruth visible points that are predicted as occluded, or where
the prediction is farther than the threshold).

For TAP-Vid datasets, evaluation is split into strided mode and query-first
mode. Strided mode samples query points every 5 frames on the groundtruth
tracks when they are visible. Query points can be any time in the video hence
it tests the model prediction power both forward and backward in time. Query-
first mode samples query points only when they are first time visible and the
evaluation only measures tracking accuracy in future frames.

References

1. Bousmalis, K., Vezzani, G., Rao, D., Devin, C., Lee, A.X., Bauza, M., Davchev,
T., Zhou, Y., Gupta, A., Raju, A., et al.: Robocat: A self-improving foundation
agent for robotic manipulation. arXiv preprint arXiv:2306.11706 (2023)



BootsTAP 11

2. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the
kinetics dataset. In: Proc. CVPR. pp. 6299–6308 (2017)

3. Doersch, C., Gupta, A., Markeeva, L., Recasens, A., Smaira, L., Aytar, Y., Carreira,
J., Zisserman, A., Yang, Y.: TAP-Vid: A benchmark for tracking any point in a
video. NeurIPS (2022)

4. Greff, K., Belletti, F., Beyer, L., Doersch, C., Du, Y., Duckworth, D., Fleet, D.J.,
Gnanapragasam, D., Golemo, F., Herrmann, C., et al.: Kubric: A scalable dataset
generator. In: Proc. CVPR (2022)

5. Karaev, N., Rocco, I., Graham, B., Neverova, N., Vedaldi, A., Rupprecht, C.:
CoTracker: It is better to track together. arXiv preprint arXiv:2307.07635 (2023)

6. Kimble, K., Van Wyk, K., Falco, J., Messina, E., Sun, Y., Shibata, M., Uemura, W.,
Yokokohji, Y.: Benchmarking protocols for evaluating small parts robotic assembly
systems. Proc. Intl. Conf. on Robotics and Automation 5(2), 883–889 (2020)

7. Liu, B., Zhu, Y., Gao, C., Feng, Y., Liu, Q., Zhu, Y., Stone, P.: Libero: Bench-
marking knowledge transfer for lifelong robot learning. NeurIPS 36 (2024)

8. Patraucean, V., Smaira, L., Gupta, A., Recasens, A., Markeeva, L., Banarse, D.,
Koppula, S., Malinowski, M., Yang, Y., Doersch, C., Matejovicova, T., Sulsky,
Y., Miech, A., Frechette, A., Klimczak, H., Koster, R., Zhang, J., Winkler, S.,
Aytar, Y., Osindero, S., Damen, D., Zisserman, A., Carreira, J.: Perception test:
A diagnostic benchmark for multimodal video models. NeurIPS

9. Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-
Hornung, A.: A benchmark dataset and evaluation methodology for video object
segmentation. In: Proc. CVPR (2016)

10. Vecerik, M., Doersch, C., Yang, Y., Davchev, T., Aytar, Y., Zhou, G., Hadsell, R.,
Agapito, L., Scholz, J.: RoboTAP: Tracking arbitrary points for few-shot visual
imitation. In: Proc. Intl. Conf. on Robotics and Automation (2024)

11. Wen, C., Lin, X., So, J., Chen, K., Dou, Q., Gao, Y., Abbeel, P.: Any-point tra-
jectory modeling for policy learning. arXiv preprint arXiv:2401.00025 (2023)


	Supplementary material for BootsTAP: Bootstrapped Training for Tracking-Any-Point

