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Fig. A: U-Net architecture utilized in our Real-SRGD. Channel Dim = 128,
Depth Multipliers = {1,2,4,8}, ResNet Blocks = 2, input resolution = 256 x 256.

Full attention is applied to the deepest ResNet block with timestep and task
class embeddings, while linear attention is used for the other ResNet blocks.

Fig. [A| provides an overview of the U-Net [II] architecture used in our Real-
SRGD, which follows the model referenced in DDPM [7]. We set the dimension
of the first U-Net layer to 128, and the depth multipliers for U-Net are {1,2,4,8}.
The number of ResNet Blocks is 2. In addition, an attention mechanism is applied
to the output of each layer’s ResNet block. This mechanism involves the use of
timestep and task class embeddings. Full attention is directed toward the deepest
layer, while linear attention is applied to the remaining layers. The model accepts
an input resolution of 256 x 256 pixels. Low-resolution images are upscaled to
this input resolution through Bicubic interpolation before being concatenated
with noisy, high-resolution images, which then serve as the model’s inputs.
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B Exploring the Settings for Effective Diffusion Models
in RISR
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Fig. B: FID10K among our models at various inference timesteps.

In our quest for the optimal training methodology for diffusion models suit-
able for real-world image super-resolution (RISR), we evaluated the performance
of models trained under a broad array of settings. More specifically, we as-
sessed combinations of diffusion model training methods (DDPM [7] and EDM
[8]), training timesteps (T=1000, or continuous timesteps), and noise schedul-
ing methods (Linear, Cosine, Sigmoid). Like many existing methods, we imple-
mented a super-resolution enlargement factor of four.

We trained the models using the DIV2K [9], Flickr2K [12], and OST [I5]
datasets We set the initial layer of U-Net to 64 dimensions, defined the input
image size as 256 x 256 pixels, configured the training model’s EMA decay to
be 0.995, and limited the training iterations to 40K . In addition, during this
preliminary screening, we trained super-resolution diffusion models considering
only LR images as conditions, instead of task-conditional diffusion models.

Fig. |B| presents the FID10K scores of the RealSRv3 [I] dataset at various
inference timesteps. In the legend of Fig. parentheses indicate the type of
noise scheduling. We found that the sigmoid noise scheduling generally results
in poorer FID10K scores, with only moderate improvements as the number of
inference timesteps increases. On the other hand, for the cosine and linear noise
schedules, the best scores are achieved around 200 to 300 inference timesteps,
after which there seems to be no improvement and even a slight worsening trend.
Following preliminary experiments, we adopted two models: the continuous time
DDPM with a linear noise schedule, hereafter called CDM, and the EDM model.

Furthermore, we conducted a thorough examination into the impacts of the
U-Net dimensions (64 or 128 dim), the effects of EMA decay, and the benefits



Real-SRGD: Enhancing RISR with Classifier-Free Guided Diffusion 3

of supplementing the training data with the DIV8K [6] dataset. Based on these
investigations, we resolved to increase the dimension of the first U-Net layer to
128, adjust the EMA decay rate to 0.9999, and change our training dataset to
be DIV2K, DIVS8K, Flickr2K, and OST datasets. These revised EDM and CDM
models are the ones employed in our study.

C Training and Inference Details

C.1 Training Details

We trained our Real-SRGD models using AdamW with L2 loss as the loss func-
tion. Training commences with a learning rate of 1 x 1074, incorporating a linear
warmup for the initial 4K iterations, and afterwards employs a cosine anneal-
ing scheduler that reduces the learning rate from 1 x 107% to 1 x 10~7 over
the course of total 40K iterations.. We adopt an exponential moving average
(EMA) with decay = 0.9999 for more stable training and better performance.
Our implementation builds upon the DDPM as implemented by Phil Wang [14].

Fig. 2 in our paper provides an overview and a data augmentation pipeline
of our proposed method. In the case of task conditions pertaining to RISR,
our Real-SRGD employs the same data augmentation pipeline as used in Real-
ESRGAN. However, when the task conditions are related to BIR or SR, our
implementation modifies the data augmentation pipeline to include only the
elements relevant to the respective tasks.

The LR image’s condition are concatenated with input noise along the chan-
nel axis before inputting them into the model. Simultaneously, the task-class
condition is encoded into an embedding, similar to the timestep embedding,
and is incorporated into the model’s residual blocks. During inference, the LR
condition remains unchanged, whereas the noise is iteratively updated.

Furthermore, to enable classifier-free guidance after the model’s training, we
conduct learning without inputting the task-class condition to the model 10% of
the time.

C.2 Inference Details

Based on the results presented in Fig. we selected 250 generation timesteps
for model inference because it provided an optimal balance between quality
and efliciency for our CDM model. The EDM model operates with a setting of
32 steps for both training and generation. This model serves as a lightweight
alternative, providing a more streamlined generation process compared to the
continuous-time DDPM model. Furthermore, to generate samples, the EDM
model leverages the DPM++ sampler [I0]. This approach achieves generation
speeds approximately twice as fast as those in its original configuration.
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Table A: Impact of generation steps on DDPM cosine noise schedule

inference RealSRv3 DRealSR

timesteps gy oK | NIQE | MANIQA 1 FID10K | NIQE | MANIQA 1

1 287.29 30.859 0.2224 297.96 32.780  0.2294

2 273.74 16.010 0.3407 285.33 16.810  0.3613

4 207.76 17.820 0.4582 220.41 19.288  0.4639

8  111.48 19.123 0.4652 135.41 20.167 0.4728

16 52.97 12.647  0.4258 67.02 13.755  0.4244

32 3272 9.357  0.3803 38.52  9.911  0.3687

50 29.22  8.742  0.3674 32.30  9.186  0.3514

100 27.80 8.128  0.3584 29.22 8426  0.3391

200 27.66 7.833  0.3538 27.82  7.904 0.3319

250 27.60 7.699  0.3503 27.38  7.909  0.3303

300  27.33  7.658 0.3495 27.28 7.670 0.3275

400 27.82  7.549  0.3470 27.24  7.695 0.3261

500 27.97 7578  0.3475 27.41 7.577  0.3252

600 28.08 7.436  0.3461 26.95 7.653 0.3243

700 28.19 7.414  0.3454 27.23  7.497 0.3241

800 28.19 7.411  0.3461 27.03 7.577 0.3234

900 28.18  7.439  0.3459 27.08 7.430 0.3238

1000 28.36 7.404  0.3439 27.06 7.507 0.3231

D Additional Comparisons Between Real-SRGD and
Other Models

We present additional side-by-side comparisons of RISR results between our
Real-SRGD and other benchmark models. Figs. [G] [H] and [[] show comparisons
on the RealSRv3 dataset while Figs. and [[] show comparisons on the
DRealSR dataset. Figs. [M] and [N] represent comparisons on the DIV2K-Wild
[13] dataset.

E Comparison of RISR Results with Classifier Guidance
(CG) and Classifier-Free Guidance (CFG)

We evaluated our method with classifier guidance (CG) [3] instead of CFG. The
implementation of CG was based on the proposed paper [3], utilizing a U-Net-
based classifier that was trained to classify images with noise added according to
the timestep. Our experiments involved two different training scenarios for the
classifier. The first scenario was a binary classification between real images and
images degraded for RISR, and the second was a quaternary classification among
real images and images with degradations applied according to the three tasks in
our proposed method. The validation results showed that the classifier trained
in the latter configuration performed better, so we compared the results of CG



Real-SRGD: Enhancing RISR with Classifier-Free Guided Diffusion 5

using this classifier with our proposed method that employs CFG on RealSRv3
and DRealSR datasets.

We provide side-by-side comparisons of RISR results with CG and CFG. In
addition, we will also include the results from the baseline model.

Fig. [E] shows comparisons on the RealSRv3 dataset while Fig. [F] shows com-
parisons on the DRealSR dataset.

For CG, increasing the scale tends to improve perceptual evaluation metrics,
although a granular noise often appears in the image. The results when using
both CFG and CG tend to be better than using CG alone, but the results of
CFG alone often give a stronger impression of higher resolution.

F Impact of Different Task Composition on Performance

In the proposed method, the task classes were one-hot encoded from three classes:
RISR/SR/BIR. To examine the impact of different task partitions on perfor-
mance, we also evaluated a partitioning into five classes. These five classes are
Blurring, Resolution change, Noise addition, Compression (JPEG), and RISR,
which encompasses all of these. Apart from the task partitioning, the model was
trained with the same settings as the CDM model described in the paper, and
comparisons were made with the EDM and CDM models. The evaluation data
used were the DIV2K-Wild and DPED-iPhone datasets. The model trained with
three classes is referred to as EDM3 and CDMS3, respectively, and the model
trained with five classes is referred to as CDM5. During inference, all models
specify the RISR class.

The results are shown in Table CDMS5 achieves better results in percep-
tual evaluation metrics such as NIQE, CLIPIQA, and MUSIQ, indicating that
the method of task partitioning can also lead to performance differences. A hu-
man subject study has not been conducted for the CDM5 model, so qualitative
evaluations by humans have not been confirmed.

Additionally, for the CDM3 model, each of the three classes corresponds to
existing tasks, providing the advantage of being usable for different tasks per
class. However, in the CDM5 model, classes other than RISR correspond to
specific degradations, which makes them difficult to use unless the degradation
of the input image is known.

G Effect of Classifier-Free Guidance Scale

We compare the effect of the scale of classifier-free guidance (CFG) on image
quality in our Real-SRGD (Both EMD and CDM models). Figs.[O] [P} [Q} and [R]
represent comparisons of RISR results on the RealSRv3 and DRealSR datasets,
conducted while varying the scale of CFG.

In both models, as the scale increases, there appears to be an improvement in
resolution. However, at higher scales, some results exhibit unnatural effects, such
as color bleeding. Comparing between EDM and CDM, the resolution seems to
be relatively higher using the CDM model.
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Table B: Evaluation of Performance Differences Due to Task Decomposition
Variations.

Methods DIV2K-Wild DPED-iPhone
PSNR 1 SSIM 1 LPIPS | NIQE | CLIP-IQA 1 MUSIQ 4 NIQE | CLIP-IQA 1 MUSIQ
baseline 17.55 0.4554 04035 3.269  0.5881 55.40  3.918  0.3831 45.58
EDM3 (s =0) 16.98 0.3454 0.5630 3.389  0.5080 46.68  3.993  0.2697 34.61
EDM3 (s =1) 16.47 0.3381 0.5092 2.928  0.6373 55.55  3.495  0.3672 46.99
EDM3 (s =2) 15.96 0.3265 0.4951 2.729  0.6844 59.19  3.213  0.4322 52.00
CDM3 (s =0) 17.73 0.4600 0.4367 3.732  0.4707 4751 4.148  0.3273 39.81
CDM3 (s=1) 17.00 0.4275 0.4000 2.866  0.7125 62.24  3.522  0.4887 53.13
CDM3 (s=2) 16.34 0.3984 0.4183 2.722  0.7711 65.85  3.365  0.5757 57.75
CDM5 (s =0) 17.71 0.4620 0.4488 4.111  0.4567 4535  4.690  0.2791 34.92
CDM5 (s=1) 15.82 0.3907 0.4230 2.996  0.7754 66.46 3.315  0.5876 57.20
CDM5 (s =2) 14.34 0.3420 0.4805 3.104  0.7953  67.49 3.423  0.6769  61.44

Table C: NIQE of models using CFG under LR Conditions. (Baseline model’s
NIQE: 3.269 for DIV2K-Wild and 3.918 for DPED-iPhone)

DIV2K-Wild DPED-iPhone
Methods CFG start step (total 250) CFG start step (total 250)
0 50 100 150 200 0 50 100 150 200

Ourspr (s =1) 3.581 3.534 3.409 3.613 3.351 3.461 3.448 3.346 3.482 3.639
Ourspr (s =2) 6.220 6.128 5.420 5.052 3.936 4.629 4.631 4.398 4.272 4.069
Ourszr (s =3) 8.598 8.493 7.859 6.206 4.688 5.813 5.806 5.892 5.347 4.760
Oursrr (s =4) 10.744 10.757 10.225 7.286 5.355 6.930 6.914 7.034 6.369 5.446

H LR Condition-Based Classifier-Free Guidance

We also conducted experiments applying CFG using the LR image conditions,
instead of the task conditions. We verified starting the CFG from the middle
steps of generation as well. The LR image condition provides the foundational
information for generating high-resolution images, and particularly in the initial
stages of generation where the input is predominantly noise, the model would
struggle to effectively denoise without the LR image condition. As a result of
auditing multiple starting steps of CFG, as expected, we noted an improvement
in results when the CFG was initiated from the mid-generation steps, compared
to applying the CFG from the beginning.

Table [C] shows the NIQE scores for the DIV2K-Wild and DPED-iPhone
datasets. The NIQE scores achieved with CFG, using the LR condition, are
worse than those of the baseline model, with the best scores being 3.351 for
DIV2K-Wild and 3.346 for DPED-iPhone. Our experimental results confirmed
that the application of CFG under task conditions resulted in superior quality of
the generated images compared to the application of CFG under the LR image
conditions.
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Table D: Glicko-2 [4] rating results in

Please select the image you think has better quality from the two below. human SU‘bJeCt Study'
Methods Rating Score 1 Deviation | Volatility |
Ourscpnr (s =2.0) 1806.58 69.103 0.06000
Ground Truth 1742.88 66.928 0.06006
Ourscpnr (s = 1.0) 1692.10 66.305 0.05996
Oursgpn (s =2.0) 1673.95 65.498 0.06003
Real-ESRGAN+ 1598.33 62.757 0.05998
Oursgpn (s =1.0) 1574.03 64.869 0.06000
SwinlR-GAN 1541.21 64.869 0.05998
S FeMaSR 152270 64.387  0.05997
StableSR. 1495.92 64.935 0.05999
RealDAN 1424.05 64.968 0.05997
. . . Ourscpu (s =0.0 1418.40 65.821 0.06003
Fig. C: User interface for image com- DiﬁB(IR ) 141207 65054 0.06007
parison and Selection. Oursgpn (s =0.0) 1326.28 68.923 0.06000
Swin2SR 1271.22 68.543  0.05993
Bicubic 839.47 100.460 0.05993

I Supplementary Details of Human Subject Study

In our human subject study, we used a pairwise comparison strategy wherein
participants were presented with pairs of images and asked to indicate their
preference on the basis of the perceived image quality. To easily distinguish the
differences when the subjects compared the images, we used the top 2,000 images
with the largest variance after super-resolution from the 10,000 RealSRv3 and
DRealSR images. For the DIV2K-Wild dataset, we used a 256 x 256 crop with
the maximum variance between methods from each of the 100 samples after
super-resolution.

We developed a web-based system that randomly presented pairs of image
regions for users to choose from. Fig. [C] illustrates the interface used by the
participants in the study. We asked 14 participants to select the image they
thought had better quality from each of 150 pairs and thus acquired a total of
2,100 voting results. When randomly selecting any two methods from a total of
15, there were a total of 105 pairs of method comparisons. Each pair of methods
was evaluated on average about 20 times.

In addition to Elo, we also tried the Glicko-2 rating system [4] for calculating
ratings from the pairwise comparison results. Like Elo, Glicko-2 is often used for
player evaluations in paired competitive games, but unlike Elo, it also considers
the reliability of the ratings, and is also used for the quality evaluation of super-
resolution models [2].

The Glicko-2 rating system estimates three parameters: Rating score (u),
Rating Deviation (¢), and Volatility (o), and the final rating is in the range
(b — 20, 1u+ 20) with 95% confidence. Consequently, higher-ranked methods are
those with a high score and low uncertainty.

Final ratings are shown in Table The ranking according to the Glicko-2
score was identical to the top 5 ranking according to the Elo score. There was
some shuffling of ranks below the 6th place, but overall, the trend was similar
to the Elo results. Considering the reliability of the Glicko-2 rating, the CDM
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model (with s = 2) significantly surpassed the top-rated existing method, which
is Real-ESRGAN+, with a considerable margin in the confidence interval.

J Disparity Analysis between Perceptual Image Quality
and MANIQA Scores

We also explored the use of the perceptual quality metric MANIQA [I6], which
won the NTIRE 2022 Perceptual Image Quality Assessment Challenge [5].

Fig. [D] presents comparisons between RISR results and MANIQA scores,
with the MANIQA score for each image indicated in parentheses. Despite the
perceived image quality, our method achieves a higher MANIQA score at step=8
(0.6473) compared to step 250 (0.4292).

In our proposed method, as the number of generation steps increases to 8,
100, and 250, the perceptual quality of the image improves. Nevertheless, in
terms of MANIQA scores, a paradox arises where a fewer number of generation
steps yield higher scores, despite the perceptual image quality. This trend is not
limited to the samples in Fig.[D} it is also apparent when evaluating the average
of a large number of images. As observed in the MANIQA scores presented in
Table [A] a similar trend ensues.

Although MANIQA is recognized for its ability to produce scores that cor-
relate with human subjective quality, as evidenced by its success in the NTIRE
2022 competition [5], the disparity between perceptual image quality and the
scores shown here may be occurring due to a lack or insufficiency of training
data containing images with unique quality characteristics, such as the spotty
noise seen in the images in Fig. [D] Images featuring noise with such unique
quality characteristics might be scarce in the real world. Therefore, it’s worth
considering the inclusion of images generated by the diffusion model in the train-
ing data when designing learning-based evaluation metrics.

K Details of Comparative Models and Their Checkpoints

This section provides further details about the implementation and checkpoint
files of the comparative models used in our experiments.

For RISR

— Real-ESRGAN-+

e https://github.com/xinntao/Real-ESRGAN.git

o RealESRGAN_x4plus.pth
— SwinIR-GAN

e https://github.com/JingyunlLiang/SwinIR.git

e 003_realSR_BSRGAN_DFO_s64w8_SwinIR-M_x4_GAN.pth
— FeMaSR

e https://github.com/chaofengc/FeMaSR.git


https://github.com/xinntao/Real-ESRGAN.git
https://github.com/JingyunLiang/SwinIR.git
https://github.com/chaofengc/FeMaSR.git
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o FeMaSR_SRX4_model_g.pth
StableSR
e https://github.com/IceClear/StableSR.git
e vqgan_cfw_00011.ckpt
e stablesr_000117.ckpt
RealDAN
e https://github.com/greatlog/RealDAN.git
e RealDAN_GAN.pth
DiffBIR
e https://github.com/XPixelGroup/DiffBIR.git
e general_swinir_vl.ckpt
e general_full_v1l.ckpt
Swin2SR
e https://github.com/mv-lab/swin2sr.git
e Swin2SR_Realwor1dSR_X4_64_BSRGAN_PSNR.pth

For Conventional SR

— SwinIR
e https://github.com/JingyunLiang/SwinIR.git
e 001_classicalSR_DF2K_s64w8_SwinIR-M_x4.pth
— HAT
e https://github.com/XPixelGroup/HAT.git
e HAT_SRx4_ImageNet-pretrain.pth

Bicubic x4

|

Ours (step=250) (0.4292)

Ground Truth (0.3

8) (st ) (0.6473) Ours (step=100) (0.5098)
Fig. D: Comparisons between RISR results and MANIQA scores. Despite the perceived
image quality, our method achieves a higher MANIQA score at step=8 (0.6473) com-

pared to step=250 (0.4292)


https://github.com/IceClear/StableSR.git
https://github.com/greatlog/RealDAN.git
https://github.com/XPixelGroup/DiffBIR.git
https://github.com/mv-lab/swin2sr.git
https://github.com/JingyunLiang/SwinIR.git
https://github.com/XPixelGroup/HAT.git
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Bicubic (x4)

.

<

Ground Truth baseline "CFG + CG (s = 82) CFG | CG (s = 64) CFG (s = 2)

Fig. E: Comparison CG (s = 1,8,32,64) and CFG (s = 2) on RealSRv3 results. (crop
from Nikon_172_LR4.png)

Bicubic (x4)

(2R

Ground Truth baseline CFG + CG (s = 64) CFG (s = 2)

CFG + CG (s = 32)

Fig. F: Comparison CG (s = 1,8,32,64) and CFG (s = 2) on DRealSR results. (crop
from panasonic_131_x1_44.png)
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Bicubic (x4) Real-ESRGAN- SwinlR-GAN StableSR RealDAN

Ground Truth DiffBIR Swin2SR CDM (s = 0.0) CDM (s = 1.0)

CDM (s = 2.0)

Fig. G: Comparison of RealSRv3 results. (crop from Canon_180_LR4.png)

Bicubic (x4) Real-ESRGAN | SwinIR-GAN FeMaSR StableSR RealDAN
Ground Truth DiffBIR Swin2SR CDM (s = 0.0) CDM (s = 1.0) CDM (s = 2.0)

Fig. H: Comparison of RealSRv3 results. (crop from Nikon_089_LR4.png)

Bicubic (x4) Real-ESRGAN | SwinIR-GAN

Ground Truth DiffBIR Swin2SR CDM (s = 0.0) CDM (s = 2.0)

CDM (s = 1.0)

Fig.I: Comparison of RealSRv3 results. (crop from Nikon_103_LR4.png)
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Bicubic (x4) Real-ESRGAN+ SwinIR-GAN

Ground Truth Swin2SR CDM (s = 0.0)

CDM (s = 2.0)

DiffBIR CDM (s = 1.0)

Fig. J: Comparison of DRealSR results. (crop from DSC_1514_x1_33.png)

IR

Bicubic (><4) Real- ESRGAN+ SwmIR GAN FeMaSR StableSR

Swin2SR

CDM (s = 0.0)

CDM (s = 1.0) CDM (s = 2.0)

Ground Truth

Fig. K: Comparison of DRealSR results. (crop from panasonic_109_x1_22.png)

Ground Truth DiffBIR Swin2SR CDM (s = 0.0) CDM (s = 1.0) CDM (s = 2.0)

Fig. L: Comparison of DRealSR results. (crop from panasonic_253_x1_13.png)
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Bicubic (x4) Real-ESRGAN- SwinIR-GAN StableSR

CDM (s = 0.0)

Ground Truth DiffBIR Swin2SR CDM (s = 1.0) CDM (s = 2.0)

Fig. M: Comparison of DIV2K-Wild results. (crop from 0895x4w.png)

Bicubic (x4) Real- ESRGAN+ Sw;nIR GAN

Ground Truth DiffBIR Swin2SR CDM (s = 0.0) CDM (s = 1.0)

Fig. N: Comparison of DIV2K-Wild results. (crop from 0897x4w.png)

i a - & o < a | B &
Ground Truth CDM (s = 0.0) CDM (s =1.0) CDM (5 = 2.0) CDM (s = 3.0) CDM (s = 4.0) CDM (s = 5.0)

Fig. O: Comparison of CFG scale on RealSRv3 results. (crop from Canon_169_LR4.png)
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Bicubic (x4) EDM (s = 0.0) EDM (s = 1.0) EDM (s

g gl gt

Ground Truth CDM (s = 0.0) CDM (s = 1.0)

Bicubic (x4) EDM (s = 0.0) EDM (s = 1.0) EDM (s = 2.0) EDM (s = 3.0) EDM (s = 4.0) EDM (s = 5.0)

L

> > >

CDM (s = 2.0) CDM (s = 3.0) CDM (s = 4.0) CDM (s = 5.0)

Ground Truth CDM (s = 0.0) CDM (s = 1.0)

Fig.Q: Comparison of CFG scale on DRealSR results. (crop from
panasonic_195_x1_28.png)

A v &
g N g & -
Ground Truth . CDM (s = 1.0) CDM (s = 2.0)

Fig.R: Comparison of CFG scale on DRealSR results. (crop from
panasonic_199_x1_27.png)
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