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Supplementary Material

A Additional Experiments

Performance on Spatial-Focused Datasets. We investigate its performance
on the spatial-focused MSR-VTT and DiDeMo in Table 8. While our approach
aims for motion representations it performs well on spatial tasks, surpassing
Frozen, ALPRO, Lavender, and Singularity.

Table 8: MSR-VTT and Didemo Results. Our model performs well on spatial-
focused datasets despite targeting motion.

MSR-VTT DiDeMo

R@1 R@5 R@10 Avg R@1 R@5 R@10 Avg

Frozen [4] 31.0 59.5 70.5 53.7 31.0 59.8 72.4 54.4
ALPRO [40] 33.9 60.7 73.2 55.9 35.9 67.5 78.8 60.7
Lavender [44] 37.8 63.8 75.0 58.9 47.4 74.7 82.4 68.2
Singularity [37] 36.8 65.9 75.5 59.4 47.4 75.2 84.0 68.9
VindLU [10] 43.8 70.3 78.5 64.5 54.5 81.3 89.0 75.0
LocoMotion 39.3 69.8 78.2 62.3 51.2 76.5 84.9 70.9

Impact of Video Background. We assess the impact of using real WebVid [4]
videos as the background to our generated motions. Specifically, we compare
using a black background to a static frame of the video and the full video. From
the results in Table 9 we conclude that using the original video, whether as a
static frame or the full video is more successful than a blank black canvas. This
demonstrates that our method is successful despite the sometimes unrealistic
combination of objects and background scenes. While the black background is
lower than using the video, it still obtains good results further showcasing the
usefulness of our approach as motion-focused video-language representations can
be learned without real videos. This could be particularly useful in specialized
domains where internet-scale data is absent.

Table 9: Impact of Video Background. A background video is helpful, although
it can be a static single frame.

R@1 R@5 R@10 Avg

Black 54.0 89.7 96.6 80.1
Frame 58.6 94.3 99.4 84.1
Video 55.2 92.5 97.7 81.8

Scalability. Figure 9 ablates the scalability of our approach compared to the
baseline. Our model scales much much quicker and with a sharper gradient.
Additional Video Language Models We perform a small-scale experiment
with UMT [42] in Table 10. Our approach enables UMT to learn more effective
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Fig. 9: Scalability. Our model scales much quick and with a sharper gradient than
the baseline model.

Table 10: Our approach is effective with Unmasked Teacher [42]

#Pre-train
SSv2-Template SSv2-Label

R@1 R@5 R@10 R@1 R@5 R@10

UMT [A] 1.2M 79.3 100 100 49.1 77.0 85.1
+ LocoMotion 1.2M 79.9 99.4 100 50.9 79.5 87.5

motion representations, outperforming WebVid trained UMT on SSv2-Template
and SSv2-Label.

B Caption Content

In Figure 2 of the main paper we show radar plots displaying the average oc-
currences of different parts-of-speech per caption. For clarity, in Table 11 we
display the raw numbers used to obtain these plots alongside the caption source
and percentage of captions that the nouns can uniquely identify.

Table 11: Caption Content of common video-language datasets. Current video-
language pretraining and downstream datasets have a spatial focus demonstrated by
the average number of nouns each caption contains as well as the percentage of captions
that can be uniquely identified by the nouns they contain.

Source Words per Caption % Unique

Dataset Caption Noun Adjective Verb Adverb Adposition Noun

WebVid [4] Alt-text 6.9 1.8 1.2 0.2 2.1 57.8
HowTo100M [52] ASR 1.5 0.4 0.7 0.1 0.0 14.9
YT-Temporal [86] ASR 5.4 1.6 3.8 2.1 2.5 86.6
InternVid [78] Generated 3.7 0.7 0.9 0.0 1.5 53.7
CMD [3] Description 2.8 0.7 2.3 0.3 1.8 81.6
Charades [67] Script 6.0 0.2 3.8 0.6 3.0 95.0
VATEX [77] Manual 4.3 0.7 2.1 0.3 1.8 96.0
ActivityNet [7] Manual 3.8 0.6 2.3 0.5 1.8 81.2
MSR-VTT [83] Manual 3.3 0.5 1.3 0.1 1.2 78.4
DiDeMo [1] Manual 2.6 0.6 1.1 0.3 1.2 53.1
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C Additional Implementation Details

C.1 Describing Motions

As described in the main paper, we make each of the potential phrases equally
likely. An object is considered small if it has a total area between 32×32 and
64×64, big if it has a total area between 96×96 and 128×128 and has no modifier
when the total area is between 64×64 and 96×96. To be described as moving
quickly, the average difference in the center location of the object between frames
is > 7, to be described as moving slowly the difference is < 3, otherwise, no
descriptor is used. The distance moved is considered a lot if the total distance
moved is greater than 30% of the image width and a little if the distance is less
than 10% of the image width and otherwise without a descriptor. If |θk| < 8

slightly is used to describe the rotation amount, if |θk| > 16 significantly is used,
otherwise the rotation amount is not described.

C.2 VindLU

When combining our approach with VindLU [10] we use the same encoders and
hyperparameters as in the original VindLU paper where possible. Specifically,
the visual encoder Fv is BEiT [5] pre-trained on ImageNet-21K [13]. Additional
temporal attention modules are randomly initialized. The text-encoder Ft uses
the first 9 layers of BERTBASE [14], with the cross-modal encoder using the last
three layers of the same BERTBASE model. Since VindLU has a single stage of
pre-training, we use our videos vmotion with our motion caption tparaphrase as
well as the original caption t. Pre-training uses 4 video frames with the model
optimized for 10 epochs using AdamW with an initial learning rate of 1e-4 and a
minimum learning rate of 1e-6. The batch size is 32. In fine-tuning and evaluation
we use 12 frames.

D Potential Negative Impact and Responsibility to

Human Subjects

This paper makes use of the WebVid dataset [4] following prior work [10, 37].
The WebVid dataset uses publicly available data that the people in the videos
have consented to share online, however, the authors did not specify whether
the data has been filtered for offensive content. By adding generated motions to
videos and replacing the spatial-focused caption with motion descriptions, our
proposed approach does reduce spatial bias and instead learns a motion-focused
representation. However, the model may still learn some biases present in the
original dataset.

E Limitations and Future Work

There are several open avenues for future work based on the limitations of this
paper. First, while there are a huge number of different generated motions possi-
ble, the motion generation only makes use of linear motion. If future work were
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able to describe the trajectories of non-linear motion accurately, the complex-
ity and possible descriptions of the motion could be further increased. Future
work could also investigate whether generating longer motions is useful for tasks
requiring long-range motion understanding. Secondly, we create motions using
masked objects and add these moving objects to randomly sampled videos. This
keeps the pretraining simple however, the resulting videos are not realistic. It is
worth exploring whether the video sampled for the background of the object’s
motion affects the success of the pretraining or whether generating motions in
the 3D space leads to more realistic videos which can reduce the domain gap
between generated pretraining data and real fine-tuning data. Another direction
worth exploring is whether such motion-focused video-text pairs are valuable for
other video-language tasks such as in the alignment stage of large-scale VLM
training or in text-to-video generation.


