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1 ImageNet extra results

Reminder: We evaluated the performance of our NF based augmentations
on ImageNet1k dataset [3], by fine-tuning very powerful, pretrained transform-
ers from the timm [15] library. We selected the most performant transformer
with less than 100M parameters by referring ourselves to this result page from
timm. It is an EVA02 [5,4] transformer originally ranked 9 (in the list), with
87.12M parameters, that was pretrained on ImageNet21k [12], and then fine-
tuned on ImageNet. It takes images of size 448 → 448 pixels, and is called
"eva02_base_patch14_448. mim_in22k_ft_in22k_in1k" in timm. ImagetNet
Real [1] labels were used for testing, as they fix labeling mistakes present in the
original testing set.

Extra results: In Table 1 we compare our NF augmentations (NFA) against the
baseline, and standard augmentations (SA) commonly used in state-of-the-art
attention based models [10]. Those standard augmentations include RandAug-
ment [2] and RandomErasing [16], and are implemented using timm. It can be
noted that highest accuracies are reached using GLEM augmentations, which
achieve a top-1 (resp. top-5) accuracy of 91.229% (resp. 98.854%). Concern-
ing training details, we use SGD with a global gradient clipping at norm 1.
The models are trained for a total of 3 epochs, with a learning rate equal to
1.0 · 10→5, annealed every epoch using SGDR [11] with default parameters from
Pytorch. This results in learning rates respectively equal to [1.0·10→5, 0.75·10→5,
0.25 · 10→5] at each epoch. For all experiments, the dataset is duplicated 3 times
with augmented images.

Table 1: Comparison of our NF augmentations (NFA): with CE and GLEM, against
the Baseline and Standard Augmentations (SA) when fine-tuning the EVA02 trans-
formers on ImageNet.

Top1 Acc Top5 Acc
Baseline SA CE GLEM Baseline SA CE GLEM
90.896 91.191 91.182 91.229 98.802 98.836 98.845 98.854

https://github.com/huggingface/pytorch-image-models/blob/main/results/results-imagenet-real.csv
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1.1 Augmented Images on ImageNet

In this section, we show augmented images using GLEM on ImageNet. The Image
on the left is the original one, and the 3 images on the right are augmented by
randomly disrupting the coordinates of the original images in the latent space,
along the principal variation modes of the underlying classes.

Fig. 1: Augmentation on class 22.

Fig. 2: Augmentation on class 14.

Fig. 3: Augmentation on class 2.

Fig. 4: Augmentation on class 0.

Fig. 5: Augmentation on class 6.

Fig. 6: Augmentation on class 60.
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Fig. 7: Augmentation on class 511.

Fig. 8: Augmentation on class 895.

Fig. 9: Augmentation on class 814.

Fig. 10: Augmentation on class 849.

Fig. 11: Augmentation on class 794.

Fig. 12: Augmentation on class 523.
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1.2 Interpolated Images on ImageNet

In this section, we show selected interpolations between images from identical
or di!erent classes. We use the rescaled interpolation from [7].

Fig. 13: Interpolation on class 1.

Fig. 14: Interpolation on class 3.

Fig. 15: Interpolation on class 500.

Fig. 16: Interpolation on class 510.

Fig. 17: Interpolation on class 946.

Fig. 18: Interpolation on class 637.

Fig. 19: Interpolation on class 327.
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Fig. 20: Interpolation between random classes.

Fig. 21: Interpolation between random classes.

Fig. 22: Interpolation between random classes.

Fig. 23: Interpolation between random classes.

Fig. 24: Interpolation between random classes.

Fig. 25: Interpolation between random classes.

Fig. 26: Interpolation between random classes.

Fig. 27: Interpolation between random classes.
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1.3 Sampled Images on ImageNet

In this section, we show class conditional image samples from ImageNet, that
were filtered with a classifier.

Fig. 28: Sample from class 980 (Volcano).

Fig. 29: Samples on class 947 (Mushroom).
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Fig. 30: Samples on class 109 (Brain coral).

Fig. 31: Samples on class 414 (Backpack).
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2 Proposition 1 and its proof

Equations are numbered starting from those in the main paper.

Proposition 1. Let PX(.|y1), PX(.|y2) be two probability distributions defined
on a compact X ↑ Bd. The optimization of Eq.3 leads to

E
[
(PZ(Z|y1)↓ PZ(Z|y2))2

]
↔ B, (7)

with
B = E

[
(PX(X|y1)↓ PX(X|y2))

2
]
→ exp(1)

det(ωy→)
, (8)

being y↑ = argmin
y↓Y

det(ωy) and Bd a zero centered unit ball enclosing data1 in

X .

Details of the proof are given below. More importantly, the bound in Eq. 8 shows
that when optimizing Eq. 3 only, condition (i) is achieved (see line 54 in the main
paper) but at the detriment of (ii), (see line 56 in the main paper); i.e., di!erent
classes may result into highly confounded gaussians, and this makes their label
conditioning erroneous.

Proof 1. Using Eq.2 (line 186 in the main paper), one may write

E
[
(PX(X|y1)↓ PX(X|y2))2

]
= E

[
(PX(f(X)|y1)↓ PX(f(X)|y2))2. det(Jf(X))

2
]
,

(9)
here the expectation is w.r.t. the marginal distribution of X. The class of widely
used flows2 can be written using quasi-linear mapping as Z = f(X) = WXX+
cX, with (Z|Y) ↗ N (µY,ωY). With this quasi-linear form, det(Jf(X))) =
det(WX), and ↘x0 ≃ X s.t.

E
[
(PZ(Z|y1)↓ PZ(Z|y2))2

]

E
[
(PX(X|y1)↓ PX(X|y2))2

] ↔ 1

det(Wx0)
2
, (10)

by plugging f(X) in Eq.3 (line 195 in the main paper), LNF becomes

E
[
1

2
(WXX+cX↓µY)↔ω→1

Y (WXX+cX↓µY)+
1

2
log(det(ωY))↓log | det(WX)|

]
.

(11)
For X ⇐ x0, the stationary solution of LNF w.r.t. Wx0 leads to

ω→1
y0

(cx0 +Wx0x0 ↓ µy0)x
↔
0 ↓

sign(det(Wx0))

| det(Wx0)|
.adj(Wx0)

↔ = 0 (12)

1 This is easily obtainable by rescaling the data in X .
2 including linear mapping, a!ne and additive coupling layers as well as their composition.
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since

sign(det(Wx0))

| det(Wx0)|
.adj(Wx0) = W→1

x0
, (13)

and using Eq. 12

Wx0(x0x
↔
0 +W→1

x0
(cx0 ↓ µy0)x

↔
0)W

↔
x0

= ωy0 , (14)

being x0x↔
0 the autocorrelation matrix of x0. Let I ≃ Rd↗d be the identity matrix,

since

det((x0x
↔
0 +W→1

x0
(cx0 ↓ µy0)x

↔
0) ↔ det(x0x

↔
0 + I), (15)

Eq. 14 leads to

1

det(Wx0)
2
↔ det(I + x0x

↔
0) det(ωy0)

→1

↔
(
tr(x0x↔

0 + I)

d

)d

det(ωy0)
→1

=

(
tr(x0x↔

0) + tr(I))

d

)d

det(ωy0)
→1

=

(
⇒x0⇒22 + d)

d

)d

det(ωy0)
→1

↔
(
1

d
+ 1

)d

det(ωy0)
→1

↔ lim
d↘≃

(
1

d
+ 1

)d

det(ωy0)
→1

↔ exp(1) det(ωy→)→1,

which also results from x0 ≃ Bd. By plugging this upper bound in Eq. 10, we
complete the proof.

↭
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3 Implementation Details

3.1 NFs

This section gives details on the training of the NFs. All experiments are run on
Pytorch2, with V100 GPUs that have 16GB or 32GB RAM.

Table 2: NF models are built using L levels, and each one contains F step of flows. Each
step of flow is made of Ni residual blocks (RBs) [6] with 128 hidden channels, where
i denotes the index of the level L. The optimizer used to trained the NF is Adamax
[9] with a learning rate of 10→2. This learning rate is linearly warmed up for the first
1000 iterations, and is also divided by a factor of 2 at several intervals. For CIFAR
datasets, those intervals are every 100 epochs starting from epoch 300 (included). In
all cases, the learning rate reaches a minimum of 2.5 ·10→3, however if the learning rate
is smaller than 1.25 · 10→3, it is capped at 1.25 · 10→3. On CIFAR datasets, the last 100
epochs are run with Stochastic Weight Averaging [8]. The gaussian hyperparameters
(µ,ω) are updated once per epoch using Adam [9] optimizer, with linear and geometric
schedulers. The weight ε for the LKLD loss is also updated using linear and geometric
schedulers. After a certain number of epochs, the DNF and DG datasets are merged,
meaning the training of the gaussians is stopped. Only the NF model is trained once
the datasets are merged.

EpochsModel Bits L F RBs
Per Level E M

Batch
Size a; b; c; Gaussian Adam and Scheduler εKLD and scheduler GPUs /

Hours Params (M)

CIFAR10
Ablations 5 3 8 [8, 4, 2] 500 100 512

2.0;
0.2;
0.1;

lr: [1e-1, 1e-1, 1e-2, 1e-3]
epochs: [1, 10, 11, 100]
scheduler: geometric

ε: [50, 25]
epochs: [1, 100]
scheduler: linear

8 - 80h 42.9

CIFAR10
NF Acc 5 4 8 [8, 4, 2, 1] 500 100 512

2.0;
0.2;
0.1;

lr: [1e-1, 1e-1, 1e-2, 1e-3]
epochs: [1, 10, 11, 100]
scheduler: geometric

ε : [50, 25]
epochs: [1, 100]
scheduler: linear

8 - 96h 49.0

CIFAR10
CNN Acc 8 4 16 [8, 4, 2, 1] 700 100 512

2.0;
0.2;
0.1;

lr: [1e-1, 1e-1, 1e-2, 1e-3]
epochs: [1, 10, 11, 100]
scheduler: geometric

ε: [50, 25]
epochs: [1, 100]
scheduler: linear

8 - 280h 97.9

CIFAR100
Ablations 5 3 8 [8, 4, 2] 500 100 512

0.5;
0.2;
0.05;

lr: [1e-1, 1e-1, 1e-2, 1e-3]
epochs: [1, 10, 11, 100]
scheduler: geometric

ε: [10, 1e-1, 1e-10]
epochs: [1, 50, 100]
scheduler: geometric

8 - 88h 43.4

CIFAR100
NF Acc 5 4 8 [16, 8, 4, 2] 500 100 512

0.5;
0.2;
0.05;

lr: [1e-1, 1e-1, 1e-2, 1e-3]
epochs: [1, 10, 11, 100]
scheduler: geometric

ε : [15, 1e-1, 1e-10]
epochs: [1, 50, 100]
scheduler: geometric

8 - 160h 87.0

CIFAR100
CNN Acc 8 4 16 [8, 4, 2, 1] 700 100 512

2.0;
0.2;
0.05;

lrµ: [1e-1, 1e-1, 1e-2, 1e-3]
epochsµ: [1, 10, 11, 100]

lrω : [1e-1, 1e-1, 1e-2]
epochsω : [1, 10, 100]

scheduler: geometric

εµ: [10, 1e-1, 1e-10]
epochsµ: [1, 50, 100]

εω : [10, 10, 1e-1]
epochsω : [1, 50, 100]

scheduler: geometric

8 - 280h 98.5

ImageNet VAE latent space [13] 3 8 [8, 4, 2] 90 25 1024
0.5;
1.0;
0.05;

lrµ: [1e-1, 1e-1, 1e-2]
epochsµ: [1, 10, 25]

lrω : [1e-1, 1e-1, 1e-2]
epochsω : [1, 10, 25]

scheduler: geometric

εµ: [1, 1]
epochsµ: [1, 25]

εω : [1, 1]
epochsω : [1, 25]

scheduler: geometric

16 - 768h 49.0

Random initialization Concerning the gaussian hyperparameters that were
randomly initialized in Table 7 of the paper, the means are randomly fixed
following a uniform distribution in [-1, 1], and diagonal entries of the covariances
are randomly initialized following a uniform distribution in [a+c

10 , a+c] to ensure
the covariance matrix remains well conditioned.
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Sampling Times

Table 3: Processing time in seconds, required by the NF (with 3 levels) to sample as
many images as in the original datasets.

Dataset Time in seconds Number of Images
CIFAR10 100 50k
CIFAR100 134 50k

3.2 CNNs

The CNN used for classification is a ResNet18 [6]. The optimizer used is SGD
with a learning rate of 1e↓3, a momentum of 9e↓1 and a weight decay of 5e↓4.
One Cycle Scheduler is used [14], with a maximum learning rate of 1e↓1 that is
updated every iteration. The ResNet18 model is also adapted for small datasets,
by replacing the first 7 × 7 convolution with a 3 × 3 convolution, and replacing
MaxPooling layer with Identity function. Table 4 shows the number of training
epochs and batch size on every dataset.

Dataset Epochs Batch Size
CIFAR10 30 128
CIFAR100 50 128

Table 4: ResNet18 training details on CIFAR10 and CIFAR100. Concerning CIFAR10
and CIFAR100, the model is trained on 8 GPUs with a batch size of 16 per GPU (for
a total batch size of 128).

3.3 Metrics

In order to calculate the FID and the Coverage metric, feature vectors (penul-
timate last linear layer from CNN) are commonly used. In our case, we use the
feature vector from a ResNet18 architecture (which has a dimension of 512),
which was trained with 5 bit images on CIFAR100 dataset. It should be noted
that the produced score cannot directly be compared with results from
other papers, because we are using 5 bit images, and because the use of our
pretrained ResNet18 on CIFAR100, and not a pretrained Inception on ImageNet.
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4 Extra Visualizations

4.1 Gaussian hyperparameters ablation

(a) w/o KLD, w/o Reparam (b) w/ KLD w/o Reparam

(c) w/ KLD w/ Reparam

Fig. 32: The figures show the TSNE on CIFAR100, with ablations on the KLD and the
reparametrization. It can be noted that when neither the KLD nor the reparametriza-
tion are used (see 32a), the datapoints are completely mixed. When the KLD is
added (see 32b), some clusters are starting to get formed. Finally, when both the
reparametrization and the KLD are used (see 32c) all the clusters are distinctly sepa-
rated.
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4.2 Sampling at di!erent Temperatures

Fig. 33: Apple images sampled (from CIFAR100 dataset) with temperatures ϑ →
[1.0, 0.7, 0.5, 0.3, 0.1]

4.3 Interpolations

Fig. 34: Interpolations produced with GLEM model on CIFAR10 dataset.
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Fig. 35: Interpolations produced with GLEM model on CIFAR100 dataset.

4.4 TSNE Visualization

Fig. 36: TSNE produced with GLEM model on CIFAR100 dataset. Clusters delineated
in back show some similar classes that were successfully placed together. Clusters de-
lineated in colors show some classes that would have preferably been closer.
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4.5 Generated Images

Fig. 37: Images sampled using GLEM Method, on CIFAR10 dataset at temperature
ϑ = 1.0 on a 8 bits model. From top to bottom, the classes are, airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, truck. The mean vector of every gaussian was
also rescaled with a temperature of 1.3, as we found it gave more realistic images (but
less diverse).

Fig. 38: Images sampled using GLEM Method, on CIFAR100 dataset at temperature
ϑ = 1.0 on a 8 bits model. From top to bottom, the classes are apple, aquarium fish,
baby, bear, beaver, bed, bee, beetle, bike, bottle. The mean vector of every gaussian
was also rescaled with a temperature of 1.3, as we found it gave more realistic images
(but less diverse)
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4.6 Label Encoding - CE Method

(a) MNIST (b) CIFAR10

Fig. 39: Conditional Encoding (CE) image samples with the NF model on MNIST
(left) and CIFAR10 (right). The lowest part of an image shows the index of a class
label, which was found and added by looking at the encoding (which is right above it).
On MNIST it almost always matches the image content.

The classes for CIFAR10 are

– 0: Airplane
– 1: Car
– 2: Bird
– 3: Cat
– 4: Deer
– 5: Dog
– 6: Frog
– 7: Horse
– 8: Boat
– 9: Truck
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