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Supplement

Analysis of Experiments on a Single Dataset

To provide a more comprehensive evaluation of our approach, Table 1 presents
a detailed comparison between our method and others. Evidently, our method
achieves state-of-the-art performance across all evaluated moethods.

Table 1. Micro and macro AUC scores of several state-of-the-art methods on the single
dataset. We have marked the first, second, and third places in the results with red,
orange, and blue respectively.

Method
Ped2 Avenue Shanghai Tech

Mic AUC Mac AUC Mic AUC Mac AUC Mic AUC Mac AUC

Ristea et al.[16] - - 91.6% 92.5% 83.8% 90.5%
Doshi et al.[1] 97.8% - 86.4% - 71.6% -

Georgescu et al.[2] 97.5% 99.8% 91.5% 92.8% 82.4% 90.2%
BA Framework[3] 98.7% 99.7% 92.3% 90.4% 82.7% 89.3%
Hirschorn et al.[4] - - - - 85.9% -

OCAE[5] 94.3% 97.8% 87.4% 90.4% 78.7% 84.9%
Ionescu et al.[6] - - 88.9% - - -

BMAN[8] 96.6% - 90.0% - - -
Wu et al.[21] - - - - 80.4 -
Yan et al.[22] - - 90.1% - 78.6% -

Zaheer et al.[24] - - - - 78.9% -
Tur et al.[19] - - - - 76.1% -
Tang et al.[18] 96.3% - 85.1% - 73.0% -

SCR[17] 97.3% - 89.6% - 74.7% -
Bipoco[7] 98.4% - 80.2% - 73.7% -
Liu et al.[9] 99.3% - 89.9% 93.5% 74.2% 83.2%

Zheng et al.[10] - - 91.8% 92.3% 83.8% 87.8%
Madan et al.[11] - - 93.2% 91.8% 83.3% 89.3%
Wang et al.[20] 99.0% - 92.2% - 84.3% -
Yu et al.[23] 97.3% - 89.6% - 74.8% -
Fastano[12] 96.3% - 85.3% - 72.2% -

Park et al.[13] 97.0% - 82.8% 86.8% 68.3% 79.7%
Ramachandra et al.[15] 88.3% - 72.0% - - -

Vatsavai et al.[14] 93.0% - 87.2% - - -

Ours 99.3% 99.8% 93.6% 93.1% 86.1% 90.3%

Analysis of Ablation Study

In the SVAD task, camera viewpoints do not switch within the same video.
Additionally, the SVAD dataset frequently includes multiple targets performing
different actions within the same frame, which contrasts with mainstream action
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recognition datasets that typically classify a video clip as a whole, often incor-
porating multiple viewpoint transitions. Fig. 1 illustrates examples from both
the pre-training datasets and the SVAD dataset. These domain differences can
cause difficulties for the model in accurately extracting action-related features
without pre-processing.

Fig. 1. An example of an anomaly from the Shanghai Tech dataset, as well as examples
from the original HMDB51 dataset that include shot transitions and interference from
irrelevant targets, are presented.

Limitations

Although our model has achieved satisfactory performance, it still has some lim-
itations. Firstly, we pre-train our model on action recognition datasets to focus
on action-based features while ignoring appearance features. However, due to the
inherent differences between VAD datasets and action recognition datasets, we
must preprocess both types of datasets in the same way. This approach incurs
additional computational overhead and affects the generalizability of the method
itself. Secondly, the clustering model we currently use is relatively simple, and
incorporating methods such as deep evidence learning might yield better results.
In the future, we will leverage large language models and multimodal models to
further explore more general and concise SVAD methods.
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