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In this supplementary material, we provide additional details about our ap-
proach, with clarifications on experimental setting and ablations followed by
further results with comparison of our method against state of the art beyond
BARF [5].

1 Experimental Details

We use the code provided by the authors [5] to create baseline results and adapt
the training and test methodology specified in [5]. For completeness, we include
some important hyper-parameters used and the evaluation protocol here for
different experiments, see [5] for full details.

1.1 LLFF experiments

Hyper-parameters: We used the learning rate for radiance filed estimation
network to decay from 1 × 10−3 to 1 × 10−4. Neural-net free pose estimation
uses the learning rates starting from 3× 10−3 and gradually decays to 1× 10−5.
For the frequencies used for positional encoding, we use L = 10 for 3D points
and L = 4 for the viewing direction. The coarse-to-fine scheduler for BARF is
linearly adjusted from iteration 20K to 100K.
Training and Evaluation Protocol We kept the training-test split for the
full LLFF experiments same as [5] whereas the five frame sequences results are
reported only on the first test-image used in the full LLFF experiments. We found
evaluating view synthesis measures on the test images far away from training
is less meaningful and have omitted these results form the main manuscript.
We computed error metrics on all test images here these results are shown in
table 2. As specified in the paper, we omit the test-time pose optimization used
in [5] from our experiments. For completeness we include the evaluation for joint
pose and structure estimation trained with full LLFF data with default runtime
optimization in table 1. It can be seen that for quite a few sequences the view
synthesis with test time pose optimization can hide structural errors.

2 DTU experiments

Hyper parameters: As BARF [5] has not been tested on DTU datasets, we
adapt the LLFF settings with minimal required changes. We found that both
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Sequence BARF +Alignment BARF +Alignment
E Rot E Trans E Rot E Trans PSNR SSIM LPIPS PSNR SSIM LPIPS

Fern 0.197 1.82 0.172 1.78 23.7 0.71 0.31 23.81 0.71 0.33
Leaves 1.311 2.65 1.019 2.29 18.87 0.55 0.35 18.90 0.55 0.34
Orchid 0.580 3.94 0.508 3.42 19.54 0.59 0.28 19.33 0.56 0.29
T-rex 1.198 7.51 0.185 2.373 23.11 0.77 0.21 22.82 0.76 0.23
Flower 0.212 2.26 0.202 1.88 23.88 0.71 0.20 24.95 0.73 0.19
Fortress 0.372 3.14 0.253 1.97 29.08 0.83 0.12 28.82 0.82 0.13
Horns 2.950 13.97 0.120 1.41 20.72 0.69 0.30 22.57 0.71 0.34
Room 0.375 2.93 0.071 1.07 31.91 0.94 0.10 31.06 0.92 0.13
Mean 0.899 4.777 0.3162 2.0241 23.851 0.723 0.234 24.03 0.72 0.2475

Table 1: View Synthesis evaluation comparison for joint radiance field and pose op-
timizations with test time pose optimization by peaking into target image. Should be
contrasted with table in main manuscript.

Seq. BARF +Alignment BARF +Alignment
E Rot E Trans E Rot E Trans PSNR SSIM LPIPS PSNR SSIM LPIPS

Fern 4.10 8.70 3.13 6.65 11.83 0.33 0.68 12.45 0.32 0.63
Leaves 2.00 4.30 1.13 2.41 11.25 0.12 0.51 11.40 0.11 0.47
Orchid 0.74 5.58 0.38 2.15 12.31 0.17 0.46 13.36 0.22 0.43
T-rex 8.22 40.82 0.34 1.71 10.28 0.28 0.71 15.48 0.47 0.39
Flower 0.55 2.40 0.60 1.14 17.03 0.38 0.32 16.12 0.30 0.34
Fortress 11.84 63.84 2.19 13.31 11.10 0.29 0.67 14.71 0.35 0.46
Horns 3.39 28.26 1.71 13.96 11.96 0.29 0.63 13.14 0.31 0.57
Room 0.65 4.49 0.15 1.17 16.27 0.63 0.40 18.94 0.72 0.39
Mean 3.99 19.93 1.20 5.31 12.75 0.31 0.55 14.45 0.35 0.46

Table 2: Results on LLLF sequence with first five images used for training. Note that
this experiment do not correspond to the once reported in DS-NeRF [4] and other
literature where training views are sampled uniformly to create with large baselines.
Should be compared with the corresponding table in main manuscript.

BARF and proposed method required lowering the learning rate for pose estima-
tion. We set the initial learning rate for pose to be 10−4 and gradually decrease
this to minimum value of 10−5. Instead of using the far depth to be infinity as in
the case of LLFF, for DTU we use the provided range by the dataset. We run all
methods for a fix 100K iterations. We gradually introduce the higher frequency
in positional encoding from iteration 10K onwards and have full positional en-
coding enabled at 60K iterations. These hyper parameters are not tuned to suit
any method but are coarsely selected to minimize pose estimation divergence for
all the methods.
Training and evaluation protocol We use the training and test spit used
in SPARF [8] to evaluate variant of proposed methods. We use the background
masks at the training and the test-time to (i) replace the background color to
be white and (ii) ignore pixels on the background for depth evaluation. For the
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evaluation of depth, given that the optimized scene is subject to a 3D similarity,
we align the scale of the predicted depth with the scale determined from the
alignment procedure. We compute the mean absolute difference between the
scaled predicted depth and ground-truth depth. We consider only those areas
where valid ground-truth depth data is available in our evaluation.
Sampling surrogate views: Selecting pixels in a random frame and matching
it with every other frame in the training set worked reasonably well in LLFF
dataset. However due to large baselines in DTU, we observed that postponing
to match far apart image to a later stage helps. To keep the number of loss
terms for rendering and matching same, we following the following procedure
to sample surrogate views to match. For any image, we define a random image
withing permissible distance to be the surrogate view. Every sampled pixel for
which we are minimizing rendering loss, we have a candidate frame to match
it in. We minimize the relevant alignment loss for each of these sample-pixel
and surrogate view pair. We start with matching images with only neighbouring
views and gradually increasing the matching window to a maximum of 4 frames
on the either side of the reference frame.

3 Comparison with other state of art approaches on
LLFF dataset

BARF was selected as the natural baseline for our work because it is one of the
few joint pose and radiance field optimization method that does not use outside
packages trained on large datasets such as depth or correspondences estimators
and is well adapted by current mainstream NeRF works.

Broadly, two major research directions have emerged post BARF: First, are
regularization techniques [1,4,6,8] often using externally leaned priors in the form
of depth/correspondence. This methods improve over BARF significantly when
only few views are available to learn. Most of these methods show diminishing
utility as training views increase with or without pose optimization. Second,
are approaches that inherently change the pose representation or optimization
routine - e.g. GARF [3], L2G [2], CamP [7] to name a few. These methods
often show consistent improvements in the joint pose and NeRF estimation with
dense views and struggle with large baseline captures without initialization. Note
however that the contribution in these papers are orthogonal to our work.

For completeness, we include results of BARF [5], GARF [3], SPARF [8],
L2G [2] and nope-nerf [1] on LLFF datasets in Tab 3. These results use same
test splits evaluation protocol as described in the main paper.

Our approach outperforms all of the aforementioned baselines despite some of
the baselines using off the self pre-trained models to provide depth / correspon-
dences in terms of estimating camera poses. Many of the orthogonal improve-
ments on BARF can be used with the direct alignment loss to futher improve
camera pose estimation.

We report view synthesis results with and without test time pose optimiza-
tion for the approaches whose code is publicly available. BARF, L2G and nope-
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nerf all show inferior view synthesis results on LLFF data to proposed approach
without test time pose optimization. Many of the baseline see artificial boost
in view synthesis accuracies when they are allowed to peak into test images.
These results highlight how large structure from motion errors are masked by
test time optimization. We notice large errors of our nope-nerf runs. To ensure
correctness, we compare our relative pose estimation and test-time optimised
view synthesis performance with reported result in Tab 4. While minor pose es-
timation differences could be due to train-test split change, large view synthesis
performance mismatch happens due us using "sim(3)+opt" instead of "neigh-
bour+opt" scheme, later being unemployable on our test split. We hope that
these results will challenge the notion that more recent approach is better and
increase appreciation of solid ablations.

Table 3: Comparison on LLFF. {*} and {#} denote results reported by authors and
reproduced by us using public code. All pose errors are absolute pose errors and TTO
represents test time pose optimization

Pose errors no TTO with TTO
Method Trans Rot PSNR SSIM LPIPS PSNR SSIM LPIPS
Ours 0.20 0.32 20.16 0.53 0.27 24.03 0.72 0.247
BARF 0.48 0.90 17.04 0.42 0.32 23.85 0.72 0.23
GARF* 0.29 0.33 - - - 24.54 0.74 0.22
L2G# 0.30 0.48 19.31 0.52 0.25 24.35 0.75 0.21
SPARF* 0.23 0.77 - - - 25.18 0.78 0.20
Nope-nerf# 0.27 2.432 13.09 0.27 0.54 23.64 0.76 0.26
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