
Supplementary Materials
D’OH: Decoder-Only random Hypernetworks for

Implicit Neural Representations

1 Initialization

In Section 3.2 we noted that we need to apply a modified initialization scheme
under the random matrix hypernetwork structure we examine. Under most in-
tiialization schemes (e.g. He [39], Xavier [33], and SIREN [77]), initialization is
conducted separately for each layer - a property we want to preserve in the target
network. However as we will use the same latent parameter vector to generate
each layer we will instead need to account for this by changing the per-layer
random matrices to match the desired initialization of the target network.

1.1 Derivation

Assume the entries of z are drawn independently and identically distributed from
a distribution of variance Var(z), and that the weights of the l

th layer of the
target network are to have variance Var(Wl). We seek a formula for the variance
Var(Bl) of the distribution from which to independently and identically draw
the entries of the random matrix Bl such that the entries of Blz have variance
Var(Wl). We assume that all entries for both z and Bl are drawn independently
of one another, and with zero mean. From Equation 2, we have:

W̄l = Blz. (1)

Recall that n denotes the dimension of z, and use superscripts to denote vector
and matrix indices. Then the above equation can be written entry-wise as:

Var(W̄ i
l) = Var(

n∑

j=1

B
ij
l z

j) (2)

Since the entries of Bl and z are all independent, we therefore have:

Var(W̄ i
l) =

n∑

j=1

Var(Bij
l z

j). (3)

Again using independence of the entries of Bl and z, we have:

Var(W̄ i
l) =

n∑

j=1

Var(Bij
l)Var(zj)

+ Var(Bij
l)E(zj)2 + E(Bij

l)2Var(zj),

(4)

2 C. Gordon, L. E. MacDonald, H. Saratchandran, S. Lucey

which simplifies to:

Var(W̄ i
l) =

n∑

j=1

Var(Bij
l)Var(zj) (5)

by our zero-mean assumption on the entries of Bl and z. Invoking our identically
distributed assumption finally yields:

Var(W̄l) = nVar(Bl)Var(z), (6)

so that:
Var(Bl) =

Var(W̄l)

nVar(z)
. (7)

We will use this formula to find bounds on a uniform distribution for Bl in order
to achieve the variance Var(Wl) of the weights considered in [77]. To initialize
Bl using a uniform distribution centred at 0, we must determine its bounds ±a.
Taking the variance of a uniform distribution, we have Var(Bl) = 1

12 (2a)2 = a2

3 .
Substituting into Equation (7), we have:

a
2

3
=

Var(W̄l)

nVar(z)
, (8)

so that

a = ±

√
3Var(W̄l)

nVar(z)
. (9)

1.2 SIREN Equivalent Initialization

We can apply Equation (9) to derive an example SIREN initialization [77].

Input Layer1: Assume z is initialized using U → (± 1
n) and W̄0 by U → (± 1

fanin
)

where fanin represents the input dimension of the target network:

Var(W̄0) =
1

12
(

2

fanin
)2 =

1

3fan2
in

(10)

Var(z) =
(2/n)2

12
=

1

3n2
(11)

Var(B0) =
Var(W̄i)

nVar(z)
=

1/(3fan
2
in)

n/(3n2)
=

n

fan2
in

(12)

a0 = ±

√
3n

fan2
in

(13)

1 We follow the SIREN initialization scheme provided in the Sitzmann et al. (2020)
codebase, as this has been noted by the authors to have improved performance [77]

Supplementary Materials - Decoder-Only Hypernetworks (D’OH) 3

Other Layers: W̄i initialized using U → (± 1
ω
→
h
), where h refers to the number

of hidden units, and ω the SIREN frequency.

Var(W̄i) =
1

12
(

2

ω
↑

h
)2 =

1

3ω2h
(14)

Var(Bi) =
Var(W̄i)

nVar(z)
=

1/(3ω
2
h)

n/(3n2)
=

n

ω2h
(15)

ai = ±

√
3n

ω2h
(16)

Numerical Comparison We initialize target networks with using Equations
(13) and (16) for a range of input and hidden layer dimensions. The D’OH
initialization correctly matches the target SIREN weight variances (Figure 1).

Fig. 1: Numerical comparison of layer variances between SIREN and the weights gen-
erated by D’OH (latent dim: 2000 and ω = 30). Our initialization closely matches the
initialization of SIREN [77].

2 Quantization, Compression, and Transmission

Quantization We outline here the design decisions for our quantization ap-
proach. We employ post-training quantization in our pipeline. While quantization-
aware training (QAT) [67] has been demonstrated to reduce quantization error
in the context of implicit neural representations [19, 25, 35, 78], we note this
has two key disadvantages: each quantization level needs to be trained sepa-
rately, while post-training quantization can evaluate multiple quantization levels
at the same time; and when quantization level is considered as part of the neu-
ral architecture search (see: Figure 3) this expands the search space of satisfying

4 C. Gordon, L. E. MacDonald, H. Saratchandran, S. Lucey

models considerably. In addition, we employ a layer-wise range-based integer
quantization scheme between the min and maximum values for each weight and
distribution [32]. We select an integer scheme to reduce the quantization sym-
bol set [31, 32, 41]. We decided on a uniform quantization scheme rather than
a non-linear quantizer such as k-means [38] due to the overhead of code-book
storage, which for small networks can be substantial proportion of compressed
memory [35]. In contrast, we represent each tensor with just three per-tensor
components (integer tensor, minimum value, maximum value). Similar range-
based integer quantization schemes are commonly described [32,41,47], and the
method we use is only a subtle variation avoiding the explicit use of a zero point.

Compression and Transmission In a typical compressed implicit neural net-
work the entire trained and compressed network weights need to be transferred
between parties. This is done by first quantizing the weights followed by a lossless
entropy compressor, such as BZIP2 [75] or arithmetic coding [78]. Our method
generates a target network by a low-dimensional linear code and fixed per-layer
random matrices. As random matrices can be reconstructed by the transfer of an
integer seed, we only quantize and compress the linear code. The recently pro-
posed VeRA incorporates a similar integer seed transmission protocol for random
matrices to improve the parameter e!ciency of Low-Rank Adaptive Models [46].

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Bits-Per-Pixel

0

5

10

15

20

25

30

35

40

P
SN

R

Hidden: 9, Width: 40

D’OH Latent Dim: 4050

D’OH Latent Dim: 8100

D’OH Latent Dim: 14600

D’OH Latent Dim: 16200

Fig. 2: Comparison of bits-per-pixel (BPP) for estimated memory footprint (parame-
ters → bits-per-weight) [dotted] and memory after applying BZIP2 [solid] to a Python
pickle of the quantized model. Rate-distortions generated by varying quantization level.
The estimated is a close proxy to an actual entropy coder, but shows some discrepancy
at low-rate and low-quantization levels where file overhead represent a larger propor-
tion of code size. To account for this we report the estimated memory footprint for
both D’OH and MLPs, which can be seen as a overhead-free limit for performance.

Supplementary Materials - Decoder-Only Hypernetworks (D’OH) 5

3 Positional Encoding

0.1 0.2 0.3
Bits-Per-Pixel

12.5

15.0

17.5

20.0

22.5

25.0

P
S
N

R

MLP [8-bit]

MLP+PE [8-bit]

COIN [16-bit]

COIN+PE [16-bit]

D’OH [8-bit]

(a) For image experiments we find that posi-
tional encoding reduces rate-distortion perfor-
mance for MLPs at 8-bit, with little change ob-
served at 16-bits. This is likely due to the in-
crease in parameters and interaction with quan-
tization e!ects. As a result we report image
benchmarks without MLP positional encoding,
as the stronger benchmark. Kodak.

5 10 15 20
Memory (kB)

0.90

0.92

0.94

0.96

0.98

Io
U

D’OH [8-bit]

MLP+PE [8-bit]

MLP [8-bit]

COIN+PE [16-bit]

COIN [16-bit]

(b) For Binary Occupancy experiments, we find
that positional encoding is necessary for MLPs
to obtain good reconstruction. This is possibly
due to the presence of high-frequency spatial
components in the 3D shape. Thai Statue.

Fig. 3: E!ects of positional encoding on Image and Binary Occupancy Experiments.
D’OH does not increase parameters when using positional encoding (See: 10a).

Table 1: Training configurations for Image and Occupancy Field experiments.

Dataset Images Occupancy

Dimensions Kodak 768 → 512
DIV2K 512 → 512

512 → 512 → 512

Hardware NVIDIA A100 NVIDIA A100
Optimizer Adam ε = (0.99, 0.999) Adam ε = (0.99, 0.999)
Scheduler (Exponential) ϑ = 0.999 ϑ = 0.999
Epochs 2000 250
Batch Size 1024 20000
Loss Mean Square Error Mean Square Error
Perceptual Metrics PSNR IOU
Compression Metrics Bits-Per-Pixel (BPP) Memory (kB)
Target MLPs: width/hidden 20/4, 30/4, 28/9, 40/9 20/4, 30/4, 28/9, 40/9
Positional Encoding 10 frequencies 10 frequencies
Activation Sine (ω = 30) Sine (ω = 30)
Learning Rates (MLP/DOH) 2e↑ 4,1e↑6 1e↑ 4, 1e↑ 6
Quantization levels [4, 5, 6, 8, 16] [4, 5, 6, 8, 16]

6 C. Gordon, L. E. MacDonald, H. Saratchandran, S. Lucey

4 Further Benchmarks and Results

4.1 Kodak

0.1 0.2 0.3 0.4
Bitrate (BPP)

20

22

24

26

28

30

P
SN

R
(d

B
)

Rate-Distortion Curve
Dupont (COIN) [2021]

Dupont (COIN++) [2022]

D’OH (Width 40, Hidden 9) [8-bit]

JPEG

JPEG2000

Strumpler (8-bit) [2022]

BPG

Xie [2021]

Ballé (Factorized Prior) [2017]

Fig. 4: Rate-Distortion on Kodak showing additional benchmarks. Our method out-
performs signal agnostic codecs trained without external datasets (COIN), our method
lags both advanced signal specific codecs (JPEG2000 and BPG [11]), and those that
employ auto-encoding [8], invertible encoding networks [91], and meta-learned initial-
izations [78]. We suspect that the gap with [78] is due to the use of quantization aware
training (QAT). As mentioned in Section 2.2, we avoid QAT as a primary motivation
for our method is to reduce the need for architecture search, including di!erent quan-
tization levels (the post-training quantization strategy we employ avoids this).

0.1 0.2 0.3 0.4
Bitrate (BPP)

20

22

24

26

28

30

P
SN

R
(d

B
)

Rate-Distortion Curve
Dupont (COIN) [2021]

Dupont (COIN++) [2022]

D’OH (Width 40, Hidden 9) [8-bit]

D’OH (Width 28, Hidden 9) [8-bit]

D’OH (Width 20, Hidden 4) [8-bit]

D’OH (Width 30, Hidden 4) [8-bit]

JPEG

JPEG2000

Strumpler (8-bit) [2022]

BPG

Xie [2021]

Ballé (Factorized Prior) [2017]

Fig. 5: Ablation running D’OH with alternative COIN target networks. We note that
D’OH is able to achieve a rate-distortion improvement on each of these architectures.
The resulting model overlay shows an indicative Pareto frontier of the method.

Supplementary Materials - Decoder-Only Hypernetworks (D’OH) 7

4.2 Occupancy Field

5 10 15

kB

0.94

0.95

0.96

0.97

Io
U

Thai Statue

5 10 15

kB

0.94

0.95

0.96

0.97

Dragon

5 10 15

kB

0.95

0.96

0.97

0.98

0.99
Armadillo

D’OH

MLP+PE

COIN+PE

Fig. 6: Rate-distortion curves for Binary Occupancy Fields on Thai Statue, Dragon,
and Armadillo. D’OH and MLP are quantized at 8-bit and COIN at 16-bit. As po-
sitional encoding is required for Binary Occupancy performance (see: Supplementary
Figure 3b, we apply it as the stronger benchmark. While a large rate-distortion advan-
tage over MLPs is observed at 6-bit quantization (see: Supplementary Table 2), when
evaluated across all quantization levels and architecture D’OH shows smaller improve-
ment or close performance to MLP models with positional encoding.

8 C. Gordon, L. E. MacDonald, H. Saratchandran, S. Lucey

Table 2: Binary Occupancy Results for Thai Statue, Dragon, and Armadillo. D’OH
performs substantially better than MLP models at low quantization levels (6-bit or
lower), and MLPs without positional encoding. At higher quantization levels perfor-
mance between MLPs and D’OH is comparable, with some rate distortion improvement
observed for the 60% D’OH. COIN represents a MLP with 16-bit quantization [23].

Memory IoU↓

Model Params (kB) Thai Statue Dragon Armadillo

6-bit
MLP (4,20) 1781 1.34 0.74 0.66 0.74
MLP (4,30) 3871 2.90 0.70 0.66 0.87
MLP (9,28) 7449 5.59 0.80 0.67 0.86
MLP (9,40) 14961 11.22 0.82 0.72 0.88

MLP+PE (4,20) 2981 2.24 0.88 0.85 0.94
MLP+PE (4,30) 5671 4.25 0.92 0.87 0.96
MLP+PE (9,28) 9129 6.85 0.93 0.87 0.96
MLP+PE (9,40) 17361 13.02 0.95 0.94 0.97

DOH (30%) 4641 3.48 0.92 0.89 0.95
DOH (60%) 8881 6.67 0.95 0.94 0.97
DOH (100%) 14961 11.22 0.95 0.95 0.97

8-bit
MLP (4,20) 1781 1.78 0.89 0.85 0.94
MLP (4,30) 3871 3.87 0.93 0.87 0.96
MLP (9,28) 7449 7.45 0.93 0.88 0.96
MLP (9,40) 14961 14.96 0.96 0.93 0.97

MLP+PE (4,20) 2981 2.98 0.94 0.94 0.97
MLP+PE (4,30) 5671 5.67 0.96 0.96 0.98
MLP+PE (9,28) 9129 9.13 0.96 0.96 0.98
MLP+PE (9,40) 17361 17.36 0.98 0.97 0.99

DOH (30%) 4641 4.64 0.95 0.95 0.97
DOH (60%) 8881 8.88 0.97 0.97 0.98
DOH (100%) 14961 14.96 0.97 0.97 0.98

16-bit
COIN (4,20) 1781 3.56 0.92 0.88 0.97
COIN (4,30) 3871 7.74 0.95 0.90 0.98
COIN (9,28) 7449 14.90 0.96 0.94 0.98
COIN (9,40) 14961 29.92 0.98 0.97 0.99

COIN+PE (4,20) 2981 5.96 0.95 0.95 0.97
COIN+PE (4,30) 5671 11.34 0.96 0.96 0.98
COIN+PE (9,28) 9129 18.26 0.97 0.97 0.98
COIN+PE (9,40) 17361 34.72 0.98 0.98 0.99

Supplementary Materials - Decoder-Only Hypernetworks (D’OH) 9

4.3 Additional Qualitative Results - Kodak

D’OH - 100% D’OH - 60% D’OH - 30%

PSNR: 29.95
BPP: 0.31

PSNR: 29.55
BPP: 0.17

PSNR: 27.60
BPP: 0.09

PSNR: 26.87
BPP: 0.31

PSNR: 26.31
BPP: 0.17

PSNR: 25.12
BPP: 0.09

PSNR: 28.44
BPP: 0.31

PSNR: 28.42
BPP: 0.17

PSNR: 27.04
BPP: 0.09

MLP (28, 9)MLP (30, 4) MLP (40, 9)

COIN (30, 4)COIN (20, 4) COIN (28, 9)

PSNR: 24.95
BPP: 0.31

PSNR: 24.28
BPP: 0.15

PSNR: 22.99
BPP: 0.08

PSNR: 23.96
BPP: 0.31

PSNR: 22.57
BPP: 0.15

PSNR: 22.94
BPP: 0.08

PSNR: 24.33
BPP: 0.31

PSNR: 24.34
BPP: 0.15

PSNR: 23.76
BPP: 0.08

PSNR: 30.24
BPP: 0.30

PSNR: 27.89
BPP: 0.16

PSNR: 25.95
BPP: 0.07

PSNR: 26.30
BPP: 0.30

PSNR: 24.92
BPP: 0.16

PSNR: 23.94
BPP: 0.07

PSNR: 28.45
BPP: 0.30

PSNR: 26.75
BPP: 0.16

PSNR: 25.35
BPP: 0.07

D’OH - 30%

MLP (30, 4)

COIN (20, 4)

Fig. 7: Additional qualitative results on Kodak showing the comparison between 8-bit
D’OH, 8-bit MLP, and COIN (a MLP quantized to 16-bits). Note that smaller COIN
architectures are required to match the comparison bit-rates. D’OH is more robust to
quantization than the MLP models. D’OH uses positional encoding, while the MLP
models do not (see: Figure 3a - PE is detrimental to low-rate MLP performance).

10 C. Gordon, L. E. MacDonald, H. Saratchandran, S. Lucey

4.4 Additional Qualitative Results - Occupancy Field

D’OH (40, 9)
60% [8-bit]

8.81kB
IoU: 0.968

MLP (28, 9)
[8-bit+PE]

9.13kB
IoU: 0.963

MLP (28, 9)
[8-bit]

7.45kB
IoU: 0.928

COIN (28, 9)
[16-bit+PE]

18.26kB
IoU: 0.968

COIN (28, 9)
[16-bit]

14.90kB
IoU: 0.963

8.81kB
IoU: 0.965

9.13kB
IoU: 0.961

7.45kB
IoU: 0.883

18.26kB
IoU: 0.968

14.90kB
IoU: 0.943

Fig. 8: Binary Occupancy qualitative results on Thai Statue and Dragon. D’OH shows
a large performance improvement over MLP models without positional encoding (which
lose high frequency information), and shows a small rate-distortion improvement or
equivalent performance to MLP and COIN models with higher memory footprints.

	D'OH: Decoder-Only Random Hypernetworks for Implicit Neural Representations
	Supplementary MaterialsD'OH: Decoder-Only random Hypernetworks for Implicit Neural Representations

