
Continual Learning Improves Zero-Shot Action
Recognition

Supplementary Material

Shreyank N Gowda1, Davide Moltisanti2, and Laura Sevilla-Lara3

1 University of Nottingham, UK
2 University of Bath, UK

3 University of Edinburgh, UK
Shreyank.Narayanagowda@nottingham.ac.uk, dm2460@bath.ac.uk,

l.sevilla@ed.ac.uk

1 Implementation Details

The framework for X-CLIP and X-Florence [7] consists of three main com-
ponents: a cross-frame communication transformer, a multi-frame integration
transformer, and a text encoder. We offer three CLIP variants:

– X-CLIP-B/32, with 12 layers (Lc), 12 attention heads (Nh), embedding di-
mension of size 768 (d), and patch size 32(p);

– X-CLIP-B/16, with 12 layers (Lc), 12 attention heads (Nh), embedding di-
mension of size 768, and patch size 16(p);

– X-CLIP-L/14, with 24 layers (Lc), 12 attention heads (Nh), embedding di-
mension of size 1024 (d), and patch size 14 (p).

All models use a 1-layer multi-frame integration transformer. For X-CLIP
the text encoder is the same as in CLIP [8], while for X-Florence it is the same
as in Florence [11]. For X-Florence, the cross-frame communication transformer
is replaced with CoSwin-H visual encoder, and a 4-layer multi-frame integra-
tion transformer is added. Both X-CLIP and X-Florence utilize a video-specific
prompting mechanism set to 2 blocks. We add 2 fully connected layers at the end
of the video encoder to convert this to a classification model. The first layer is of
size 4096 and the second is equivalent to the dimensions of the semantic vector
(768). All hyperparameters are set as in X-Florence [7] to ensure fair comparison.

The CVAE has an encoder that consists of three fully connected layers. It
takes in input a vector of size equivalent to the output of the text encoder. We use
a latent dimension of size 512 and use a three-layer decoder for reconstruction.

Our feature generation network follows earlier work [6, 10]. The generator
consists of three fully connected layers, where the output layer has dimension
matching the video features dimension. The decoder has also three fully con-
nected layers, but its output size corresponds to the class-embedding size. The
discriminator has two fully connected layers and outputs a single value. All hid-
den layers in all networks have size 4096.



2 S.N. Gowda et al.

Table 1: Generalized Zero-Shot results, where ‘u’, ‘s’ and ‘H’ correspond to average
unseen accuracy, average seen accuracy and the harmonic mean of the two. All the
reported results are on the same splits.

Model HMDB51 UCF-101

u s H u s H

WGAN [10] 23.1 55.1 32.5 20.6 73.9 32.2
OD [6] 25.9 55.8 35.4 25.3 74.1 37.7

OD + SPOT [1] 26.7 54.1 35.7 28.3 74.1 40.9
CLASTER [3] 43.7 53.3 48.0 40.8 69.3 51.3

SDR [2] 50.1 57.5 53.5 47.3 81.2 59.7
GIL (Ours) 52.8 57.8 55.1 68.2 89.8 77.5

2 Detailed Generalized Zero-Shot Action Recognition
Results

In order to better analyze performance of the model on GZSL, we report the
average seen and unseen accuracies along with their harmonic mean. The results
on the UCF101 [9] and HMDB51 [5] datasets are reported in Table 1. Results
are averaged from 10 runs, where for each run we create a different random
train/test split (which is the same for all models). We note that in this more
challenging setting GIL performs significantly better than previous state-of-the-
art (especially on UCF-101), highlighting that the model trained with GIL is
able to better retain knowledge and generalize to unseen classes. We do not
report on Truze [4] as we have no overlap between the train and test classes.

3 How Much Does Sampling Percentage of Data Affect
Model Performance?

We choose to sample 10% of data from the seen classes at each iteration. Here
we consider a few other settings sampling different amounts of data, namely: 1%,
5%, 10%, 20%, 50% and 100% of data at once. Table 2 shows the results. We
do not see a notable change in performance when increasing from 1% to 10%,
however beyond 10% the performance starts dropping. The higher the percentage
of data we sample, the faster training is. These results suggest the generalization
ability of the model are affected when it is trained “too fast”, and that a gradual
and slow introduction of new data is accordingly beneficial.

4 Using the Text Encoder of X-Florence Directly

Instead of using any semantic embedding, we could potentially leverage the text
encoder from X-Florence directly. We try this and report these results in Table 3.



Title Suppressed Due to Excessive Length 3

Table 2: Evaluating the impact of sampling percentage of data on zero-shot perfor-
mance.

% of Data HMDB51 UCF101

1 53.7 ± 1.3 79.1 ± 1.6
5 53.9 ± 1.1 79.2 ± 1.5
10 53.9 ± 1.4 79.4 ± 1.4
20 53.2 ± 1.5 78.6 ± 1.0
50 49.7 ± 2.8 75.2 ± 2.6
100 48.6 ± 3.7 73.1 ± 3.4

Table 3: Using the text encoder from the base model as semantic embedding, compared
to the other semantic embeddings we evaluate in this work.

Semantic Embedding HMDB-51 UCF-101

X-Florence Text Encoder 47.2 ± 4.1 71.6 ± 3.8
Word2Vec 48.9 ± 4.1 73.9 ± 4.1
Sen2Vec 50.8 ± 3.1 76.7 ± 2.9
ER 51.9 ± 1.5 77.9 ± 1.3
Stories 53.9 ± 1.4 79.4 ± 1.4

We see that even using a simple Word2Vec embedding does better than using
the text encoder to produce semantic embeddings.

5 How Much Does the Number of Generated Synthetic
Samples Affect Model Performance?

We generate synthetic samples from already seen classes in order to train our
classifier with synthetic features and refresh its memory. All experiments in the
main paper were conducted ensuring that the distribution of the newly sampled
classes and the synthetic features were similar, i.e., we generate a number of
synthetic features roughly equal to the number of new real samples. We also
experimented with generating fewer samples (20% to 70% of the average number
of samples in the new classes) and more samples (150% to 200%). We report
these results in Table 4, where 100% corresponds to what we do for all results
in the main paper. We see that either over generating or under generating leads
to poorer results, which suggests that keeping the number of synthetic and real
features balanced is beneficial to the model.

6 Freezing the Feature Generator

As mentioned in the paper we freeze the feature generator after it is trained
on the pre-training dataset. We do this both to save computation resources and



4 S.N. Gowda et al.

Table 4: Using different percentages of synthetic data (relative to the size of the new
classes) to train the classifier.

Percentage of synthetic samples HMDB-51 UCF-101

20 48.4 ± 2.5 74.2 ± 1.6
50 50.5 ± 1.9 76.1 ± 1.8
70 52.9 ± 1.8 78.6 ± 1.5
100 53.9 ± 1.4 79.4 ± 1.4
120 53.6 ± 1.7 77.9 ± 1.8
150 52.7 ± 1.6 77.2 ± 1.6
200 49.7 ± 1.3 76.4 ± 1.5

Table 5: Comparing results obtained fine-tuning and freezing the feature generator.

Fine-tune stage HMDB-51 UCF-101

Fine-tune on seen classes 49.5 ± 1.9 75.2 ± 1.6
Incremental fine-tune 53.1 ± 1.2 77.9 ± 1.3
Frozen 53.9 ± 1.4 79.4 ± 1.4

because in practice freezing this models leads to better results. We show this
comparing results obtained fine-tuning the feature generator on the seen classes
(one single fine-tuning) and fine-tuning the feature generator in the incremental
learning stage together with the other models. Results are reported in Table 5,
where we see that indeed freezing the feature generator gives better results. We
speculate this is the case because fine-tuning the generator makes the overall
framework more difficult to optimize, i.e., it is easier to optimize the video model
with features generated from a stable generator.

7 Experiments with CL in ZSL setup

All our experiments are in the ZSL (or generalized ZSL) setting, where test
classes are disjoint with the training set at all times. We also evaluate here our
model after each fine-tuning stage, i.e., after each time we introduce the 10%
of new classes. As expected, performance grows steadily as we introduce more
data as seen in Fig 1. This also justifies the idea of slowly introducing data as
opposed to directly fine-tune using all data.

References

1. S. N. Gowda. Synthetic sample selection for generalized zero-shot learning. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition,
2023. 2

2. S. N. Gowda and L. Sevilla-Lara. Telling stories for common sense zero-shot action
recognition. arXiv preprint arXiv:2309.17327, 2023. 2



Title Suppressed Due to Excessive Length 5

Fig. 1: Test accuracy versus training completion percentage.

3. S. N. Gowda, L. Sevilla-Lara, F. Keller, and M. Rohrbach. Claster: clustering with
reinforcement learning for zero-shot action recognition. In European Conference
on Computer Vision, 2022. 2

4. S. N. Gowda, L. Sevilla-Lara, K. Kim, F. Keller, and M. Rohrbach. A new split
for evaluating true zero-shot action recognition. arXiv preprint arXiv:2107.13029,
2021. 2

5. H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. Hmdb: a large video
database for human motion recognition. In 2011 International Conference on Com-
puter Vision, 2011. 2

6. D. Mandal, S. Narayan, S. K. Dwivedi, V. Gupta, S. Ahmed, F. S. Khan, and
L. Shao. Out-of-distribution detection for generalized zero-shot action recogni-
tion. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019. 1, 2

7. B. Ni, H. Peng, M. Chen, S. Zhang, G. Meng, J. Fu, S. Xiang, and H. Ling.
Expanding language-image pretrained models for general video recognition. In
European Conference on Computer Vision, 2022. 1

8. A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,
A. Askell, P. Mishkin, J. Clark, et al. Learning transferable visual models from
natural language supervision. In International conference on machine learning,
2021. 1

9. K. Soomro, A. R. Zamir, and M. Shah. Ucf101: A dataset of 101 human actions
classes from videos in the wild. CRCV-TR, 2012. 2

10. Y. Xian, T. Lorenz, B. Schiele, and Z. Akata. Feature generating networks for
zero-shot learning. In Proceedings of the IEEE conference on computer vision and
pattern recognition, 2018. 1, 2

11. L. Yuan, D. Chen, Y.-L. Chen, N. Codella, X. Dai, J. Gao, H. Hu, X. Huang, B. Li,
C. Li, et al. Florence: A new foundation model for computer vision. arXiv preprint
arXiv:2111.11432, 2021. 1


	Continual Learning Improves Zero-Shot Action Recognition10ptSupplementary Material

