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We present experimental results for some our choices and discuss implemen-
tation details in the supplementary material. Some of our experimental choices
included selecting the number of nearest neighbors for the data-based noise and
the ranking loss. We discuss hyperparameter selection in Section 1, the need for
cleaning data manually in Section 2 and the implementation details in Section 3.

1 Hyperparameter Selection

Choosing the number of nearest neighbors for both the data-based noise and
the ranking loss is done empirically. We use the generalized zero-shot action
recognition performance to decide these hyperparameters.

We choose UCF101 as our dataset for the hyperparameter tuning, but also
plot the results on HMDB51 as it also ended up following the same pattern. The
results are shown in Figure 1. Based on these results, we choose the number of
nearest neighbors as 3 for the data-based noise and 5 for the ranking loss. The
results reported are on the TruZe split.

2 Manual Cleaning

Generally, training with more data tends to produce better results. There often
is a tension between using a smaller amount of clean data or a larger amount
of noisy data. Here we have explored the effect of cleaning the data of Sto-
ries manually. In order to truly evaluate the effect of the Stories dataset, we
evaluate multiple models on the noisy version of the Stories dataset and report
results in Fig. 2. We see that using the noisy version of the dataset improves
the performance over ER across methods but is still consistently worse than the
cleaned version, even though it is roughly twice as large. This shows that the
effect of cleaning up the data manually is not trivial.

3 Implementation Details

3.1 Ranking Loss

One of the risks of learning to generate semantic embeddings (through the “Pro-
jection Network" in is that synthetic semantic embeddings can be too similar to
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Fig. 1: Comparison of using different number of nearest neighbors on both (left) the
data-based noise and (right) the ranking loss.

each other. To avoid this, we introduce a ranking loss [4] that pushes apart the
generated semantic representation (âi) from those of their neighboring classes:

Lrank = E[max(0, δ − aT âi + (a′)T âi)], (1)

where a is the ground truth semantic embedding, a′ is the semantic embed-
ding of a class randomly sampled from the 5 classes (empirical results in Sec. 1
closest to the ground truth and δ is a hyperparameter. Including this loss in the
overall objective function, we obtain:

min
G

min
P

max
D

LD + λ1LCLS(G)

+λ2Lrank(P ) + λ3LMI(G).
(2)

3.2 Features

For our visual features we consider two scenarios. The first case, the appearance
and flow features are extracted from the Mixed 5c layer of the RGB and flow
I3D networks, respectively. Both I3D models are pre-trained on the Kinetics-400
dataset [2].

Given an input video, appearance and flow features extracted are averaged
across the temporal dimension and pooled by 4 in the spatial dimension and
then flattened to obtain a vector of size 4096 each. These vectors are then con-
catenated to obtain video features of size 8192.

In the second case, we first train the X-CLIP-B/16 [9] on 16 frames of the non-
overlapping classes of Kinetics [1] dubbed Kinetics-664 [1] using the proposed
‘Stories’ as the semantic embedding. For the text embeddings we use the large
S-BERT [10], which is a sentence encoder.

For ER we use the class definition as input to the S-BERT and use the 1024
sized vector output as the semantic embedding. In case of Stories, we use S-
BERT for each sentence and average all the vectors to obtain a singe vector of
size 1024.
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Fig. 2: Using the cleaned version of Stories to create the semantic space of class labels
improves the performance by a large margin. The dataset is UCF101.

3.3 Network Architecture

We use the Wasserstein GAN [11] which has been successful in both zero-shot im-
age classification [12] and zero-shot action recognition [8] tasks. This also allows
us to compare directly to OD [8] and Wasserstein GAN [11] in the experimental
analysis.

The feature generator G is a three-layer fully-connected network that has
an output layer dimension equal to that of the video feature size. The hidden
layers are of size 4096. The discriminator D is also a three-layer fully-connected
network with hidden layers of size 4096. However, the output size equals 1. The
projection network P is a fully-connected network that has an output layer size
equal to the size of the semantic embeddings (in our case 1024).

3.4 Training Details

All the modules are trained using the Adam optimizer with a weight decay of
0.0005 and with an adaptive learning rate using a learning rate scheduler. We
set λ1 as 0.1, λ2 as 0.9 and λ3 as 0.1. At test time, we follow OD [8] and train
a single classifier for ZSAR and two classifiers for GZSAR along with an out-
of-distribution (OOD) detector. We report on TruZe [7] to avoid any inflated
accuracies due to class overlap.

The classifiers are single-layer fully-connected networks with an input size
equal to the video feature size and output sizes equal to the number of classes
(seen or unseen). The OOD is a three-layer fully connected network with output



4 S. N. Gowda et al.

and hidden layer sizes equal to the number of seen classes and 512, respectively.
We use 8 RTX 2080 Ti NVIDIA GPUs having 16 GB RAM each for our exper-
iments.

4 Why Not Just Use VAE for Feature Generation?

Another possible question is the use of the current feature generator model.
There are multiple options to use as feature generators including VAEs, and
other versions of GANs (not just WGAN [11] that we use).

We chose to adapt the WGAN for our feature generator based on two reasons.
First, we wanted to compare directly to existing literature on zero-shot action
recognition and to the best of our knowledge the most recent one has been the
one used in OD [8].

However, for the sake of sanity we also ran additional experiments on the
HMDB51 dataset incorporating f-VAEGAN [13], adapted FREE [3]: feature re-
finement of f-VAEGAN for zero-shot action recognition and using a simple VAE.
The results of this can be seen in Tab 1.

Feature Generator Accuracy
VAE 25.5 ± 2.9
Vanilla GAN 31.5 ± 2.4
f-VAEGAN 45.9 ± 3.2
FREE 46.6 ± 3.5
SDR (Ours) 48.1 ± 3.6

Table 1: Comparing different choices for feature generator. Reported results are on
10 different runs and all models use the same split. Dataset is HMDB51.

5 Generalized Zero-Shot Action Recognition Results in
Detail

In order to better analyze performance of the model on GZSL, we report the
average seen and unseen accuracies along with their harmonic mean. The results
using different embeddings and on the UCF101, HMDB51 and Olympics datasets
are reported in Table 2.

The reported results are on the same set of 10 random splits for fair com-
pairson. There are no manual attributes for the HMDB dataset. We see that
the proposed SDR approach obtains best results on all three categories. Another
observation we can see is that the performance of all models using Stories is
better than even the older manual attributes.
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Model SE Olympics HMDB51 UCF-101
u s H u s H u s H

WGAN [11] M 50.8 71.4 59.4 - - - 30.4 83.6 44.6
OD [8] M 61.8 71.1 66.1 - - - 36.2 76.1 49.1

SPOT [5] M - - 69.1 - - - - - 51.8
CLASTER [6] M 66.2 71.7 68.8 - - - 40.2 69.4 50.9

SDR M 71.6 76.9 74.2 - - - 43.1 77.5 54.6
WGAN [11] W 35.4 65.6 46.0 23.1 55.1 32.5 20.6 73.9 32.2

OD [8] W 41.3 72.5 52.6 25.9 55.8 35.4 25.3 74.1 37.7
CLASTER W 49.2 71.1 58.1 35.5 52.8 42.4 30.4 68.9 42.1
WGAN [11] S 36.1 66.2 46.7 28.6 57.8 38.2 27.5 74.7 40.2

OD [8] S 42.9 73.5 54.1 33.4 57.8 42.3 32.7 75.9 45.7
CLASTER S 49.9 71.3 58.7 42.7 53.2 47.4 36.9 69.8 48.3
CLASTER C 66.8 71.6 69.1 43.7 53.3 48.0 40.8 69.3 51.3
WGAN [11] Sto 52.5 73.4 61.2 35.2 65.1 45.7 33.8 84.2 48.2

OD [8] Sto 63.3 75.1 68.7 37.2 67.5 47.9 40.1 81.7 53.8
CLASTER Sto 69.1 74.1 71.5 44.3 57.2 49.9 42.1 71.5 53.0
SDR+I3D Sto 73.5 79.9 76.6 46.9 55.8 50.9 44.4 80.7 57.2

SDR+CLIP Sto 78.9 83.5 81.1 52.5 60.4 56.1 47.3 81.2 59.7

Table 2: Seen and unseen accuracies for CLASTER on different datasets using different
embeddings. ’SE’ corresponds to the type of embedding used, wherein ’M’, ’W’, ’S’,
’C’ and ’Sto’ refers to manual annotations, word2vec, sen2vec, combination of the
embeddings and Stories respectively. ’u’, ’s’ and ’H’ corresponds to average unseen
accuracy, average seen accuracy and the harmonic mean of the two. All the reported
results are on the same splits. SDR+I3D corresponds to the backbone network being
I3D and similarly for SDR+CLIP.
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