
1

Supplementary Materials for “Graph
Cut-guided Maximal Coding Rate Reduction

for Learning Image Embedding and
Clustering”

A Experimental Details

Dataset description. In Table A.1, we provide an overview of of all selected
datasets. The images in MNIST and F-MNIST are grayscale, and images of all
datasets are resized to 224×224 dimensions to serve as the inputs of CLIP image
encoder. For Oxford Flowers-102 and Stanford Dogs-120, we train and test our
CgMCR2 on the entire dataset. For all other datasets, we use the train set and
test set for training and testing, respectively.

Table A.1: Specification of all selected datasets.

Dataset # Classes # Training # Testing

MNIST 10 60,000 10,000
F-MNIST 10 60,000 10,000
CIFAR-10 10 50,000 10,000
CIFAR-20 20 50,000 10,000
CIFAR-100 100 50,000 10,000
Flowers-102 102 8,192 N/A
Dogs-120 120 20,580 N/A
TinyImageNet 200 100,000 10,000
ImageNet-1k 1000 1,281,167 50,000

Table A.2: Model parameters of the pre-feature layer, feature head, and cluster
head (from left to right).

Linear: R768 → R4096

BatchNorm1d(4096)

ReLU

Linear: R4096 → R4096

ReLU

Linear: R4096 → Rd

Linear: R4096 → R4096

ReLU

Linear: R4096 → Rk

Gumbel-Softmax

Parameters for CgMCR2. In Table A.2, we detail the model parameters of our
framework. In Table A.3, we detail the optimal hyper-parameters for CgMCR2.
The proposed CgMCR2 demonstrates robustness to variations in batch size, γ



2

Table A.3: Optimal hyper-parameters.“lr” and “wd” are the learning rate and
weight decay of Adam optimizer, d is the output dimension of feature head, T1 denotes
warm-up epochs, T2 denotes fine-tuning epochs, γ and ϵ are the hyper-parameters of
CgMCR2 objective, and s is the number of nonzero affinity entries kept in each row.

Dataset lr wd d T1 T2 bs γ ϵ s

MNIST 0.001 0.001 128 20 30 2048 50 0.5 20
F-MNIST 0.001 0.001 128 20 30 2048 50 0.2 20
CIFAR-10 0.0001 0.0005 128 10 10 512 70 0.5 10
CIFAR-20 0.0001 0.0005 128 10 40 1500 80 0.2 50
CIFAR-100 0.0005 0.0001 128 20 30 2048 1400 0.5 20
Flowers-102 0.0005 0.0005 128 20 30 2048 1200 0.5 10
Dogs-120 0.001 0.001 128 20 30 2048 1100 0.2 40
TinyImageNet 0.0003 0.0005 256 20 30 2048 3000 0.5 20
ImageNet 0.001 0.0001 256 10 10 3000 50000 0.2 3

Table A.4: Parameter search with the following parameters for Spectral Clustering,
EnSC and SCAN.

Method Search scope for parameters

Spectral Clustering σ ∈ {3, 2, 1, 0.5, 0.4, 0.3, 0.2, 0.1, 0.07, 0.05}, s ∈ {3, 10, 100, 1000}
EnSC τ ∈ {0.9, 0.95, 1}, β ∈ {1, 2, 5, 10, 50, 100, 200}
SCAN µ ∈ {1, 2, 4, 10, 20, 50, 100, 200, 500, 1000, 2000}

and ϵ. Typically, employing a larger batch size along with a higher learning rate
tends to yield more stable performance. Meanwhile, CgMCR2 with larger batch
size requires more training iteration to converge.
Searching parameters for clustering methods. When comparing with clas-
sical clustering methods and reproduced deep clustering methods, we report their
best performance through a greedy search for optimal parameters, as shown
in Table A.4. In Spectral Clustering, σ serves as the bandwidth parameter of
the Gaussian kernel, and we reserve the s largest entries of each row in the
affinity matrix. In EnSC, τ ∈ [0, 1] is the parameter regulating the sparsity of
self-expressive coefficients and β is the trade-off parameter balancing the self-
expressive error against the sparsity regularizer. In SCAN, µ is the weight of the
between-cluster entropy-maximizing regularization.
The MoCo pre-trained model. To train our CgMCR2 from scratch, we
leverage MoCo-v2, a self-supervised learning method, to learn pre-features. The
MoCo-v2 image encoder takes two augmentations of each image as inputs, and
we utilize the averaged output embedding of the two augmentations as the pre-
feature. The augmentation strategy follows that in NMCE, and is detailed in
Table A.5.
The CLIP pre-trained model. CLIP is a large-scale language-supervised
learning method that learns general semantic meaning from over 400 million
text-image pairs. In our approach, we utilize only the image encoder of the



3

Table A.5: Augmentation strategy of MoCo-v2.

from torchvision.transforms import *

Compose([
RandomResizedCrop(32,scale=(0.08, 1.0)),
RandomHorizontalFlip(p=0.5),
RandomApply([ColorJitter(0.4, 0.4, 0.4, 0.1)], p=0.8),
RandomGrayscale(p=0.2),
ToTensor(),
Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010])
)])

Table B.6: Effect of output activation function.

Output activation CIFAR-10 CIFAR-20 CIFAR-100 TinyImageNet
ACC NMI ACC NMI ACC NMI ACC NMI

Softmax 97.3 92.6 66.8 69.3 75.4 80.8 71.4 81.0
Gumbel-Softmax (Ours) 97.7 94.3 68.8 74.0 78.3 82.5 72.9 81.4

pre-trained CLIP model. Images are resized to 224 along the smaller edge and
center-cropped to 224 × 224 before being inputted to the CLIP image encoder.
Subsequently, the features extracted by the CLIP image encoder are used as
pre-features for our CgMCR2.

B More Experiment Results

B.1 Ablation Study

Ablation on the output activation. In our method, we employ the Gumbel-
Softmax as the output activation function of the cluster head. In Table B.6, we
compare the use of Softmax as the output activation function with the use of
Gumbel-Softmax and report their respective best performances on CIFAR-10,
-20, -100 and TinyImageNet. As can be seen, the use of Gumbel-Softmax leads
to slightly higher clustering accuracy on four standard datasets.
Ablation on the affinity. We examine the effect of A with various definitions.
As described earlier, the affinity matrix in the proposed CgMCR2 is defined
by A := Ps(Z

⊤
ΘZΘ). Following traditional spectral clustering approaches, we

additionally use Gaussian kernel (a.k.a. the Radial Basis Function kernel) to
define the affinities, i.e.,

ai,j = exp

(
−∥zi − zj∥22

2σ2

)
, (1)

where σ is the bandwidth parameter. In Table B.7, we report the best clustering
performance on CIFAR-10, -100, training time per iteration and memory cost of



4

Table B.7: Varying definitions of A on CIFAR-10 an CIFAR-100.

Definition of A Time (ms/it) Memory (MB) CIFAR-10 CIFAR-100
ACC NMI ACC NMI

Gaussian kernel 23.2 2,309 97.5 93.8 75.8 81.7
Cosine similarity (Ours) 22.9 2,030 97.7 94.3 78.3 82.5

Table B.8: Varying post-processing operators of A on CIFAR-10.

Post-processing of A Time (ms/it) Memory (MB) CIFAR-10 CIFAR-100
ACC NMI ACC NMI

N/A 22.4 1,905 96.7 91.6 70.1 78.6
Doubly stochastic 74.1 5,465 97.2 92.4 75.1 80.8
Reserving top-s entries (ours) 22.9 2,030 97.7 94.3 78.3 81.9

using different affinity matrices. All the experiments are conducted on a single
NVIDIA GeForce 3080Ti GPU, and the batch size is set to 512 when recording
the training time and memory cost. As can be seen, computing the Gaussian
kernel requires a bit higher computational and memory cost, and achieves slightly
inferior performance compared to computing cosine similarity.

We proceed by evaluating the effect of different post-processing operator.
We notice that the doubly stochastic projection enjoys solid theoretical guaran-
tees [1] and state-of-the-art performance as a post-processing method in subspace
clustering [2]. Specifically, the doubly stochastic projection projects the affinity
matrix onto a doubly stochastic space

A :=
{
Ã ∈ RN×N | Ã1 = 1, Ã⊤1 = 1

}
(2)

under the distance of a scaled A:

argminÃ∈A

∥∥∥Ã− µA
∥∥∥2
F
. (3)

This post-processing method also has been adopted in MLC and CPP. In Ta-
ble B.8, we use cosine similarity to define the affinity matrix and compare
our method with doubly stochastic projection and the baseline with no post-
processing. In our framework, simply reserving s largest entries of each row in A
achieves the highest accuracy with almost no computational and memory cost,
while applying doubly stochastic projection produces less satisfactory clustering
results and demands much more training time and GPU memory.
Ablation on parameter s. We previously conducted an ablation study to
evaluated the effect of hyper-parameters γ and ϵ. Another important hyper-
parameter is s, representing the number of entries reserved in each row of matrix
A. In this study, we proceed by evaluate the effect of varying s on CIFAR-10 and
CIFAR-100. For CIFAR-10, we fix the batch size to 512 and report the clustering



5

Table B.9: Clustering accuracy (%) of the CgMCR2 with varying s on CIFAR-10
and CIFAR-100.

Data s 3 5 10 20 50 100 200 300 400 500 1000 1500 2000

CIFAR-10 96.9 97.6 97.7 97.5 97.4 97.4 97.7 97.6 97.4 97.2 - - -
CIFAR-100 75.2 76.6 77.9 78.3 76.6 77.3 77.1 77.7 77.2 77.3 77.4 74.2 73.0

(a) CLIP CIFAR-10 (b) CLIP CIFAR-20 (c) CLIP CIFAR-100

(d) CgMCR2 CIFAR-10 (e) CgMCR2 CIFAR-20 (f) CgMCR2 CIFAR-100

Fig. B.1: Utilizing t-SNE for 2-D visualization. We plot (a)–(c): the CLIP pre-
features on CIFAR-10, -20, -100 and (d)–(f): the CgMCR2 features on CIFAR-10, -20,
-100.

performance of CgMCR2 with s ∈ {3, 5, 10, 20, 50, 100, 200, 300, 400, 500}. For
CIFAR-100, we fix the batch size to 2048 and report the clustering performance
of CgMCR2 with s ∈ {3, 5, 10, 20, 50, 100, 200, 300, 400, 500, 1000, 1500, 2000}. As
can be seen from Table B.9, our method demonstrates robustness to the param-
eter s. Specifically, values of s within a wide range of [5, 500] yield satisfactory
performance on CIFAR-10, while on CIFAR-100, values of s within the range of
[10, 1000] yield satisfactory performance.

B.2 Visualization

Visualization via t-SNE. To demonstrate the properties of representations
learned by the feature head of CgMCR2, we also utilize t-SNE [3] to obtain 2-D
visualization of the representations on CIFAR-10, CIFAR-20 and CIFAR-100. In
Fig. B.1, it is evident that the proposed CgMCR2 learns a more compact and
discriminative representations from the CLIP features.
Ground-truth similarity matrix. The ground-truth similarity matrix is de-
rived by computing by the cosine similarity between data pairs belonging to the



6

(a) CLIP CIFAR-20 (b) CLIP CIFAR-100 (c) CLIP TinyImageNet

(d) ZΘ CIFAR-20 (e) ZΘ CIFAR-100 (f) ZΘ TinyImageNet

(g) ΠΦ CIFAR-20 (h) ΠΦ CIFAR-100 (i) ΠΦ TinyImageNet

Fig. B.2: Ground-truth similarity matrices. We plot the similarity matrices of
(a)-(c): CLIP pre-features, (d)-(f): features produced by the CgMCR2’s feature head,
and (g)-(i): cluster memberships produced by the CgMCR2’s cluster head on CIFAR-
20, -100, and TinyImageNet, respectively.

same ground-truth cluster. An optimal ground-truth similarity matrix of rep-
resentations or memberships should exhibit a block-diagonal structure aligned
with the sorted ground-truth labels. In Fig. B.2, we visualize the ground-truth
similarity matrices of CLIP pre-features, as well as the features and cluster mem-
berships generated by CgMCR2 on CIFAR-20, -100 and TinyImageNet. The
block-diagonal structures of the ground-truth similarity matrices in our method
are clearer than that of the CLIP pre-features.

B.3 Learning Curve

Loss curves. In Fig. B.3, we plot the loss curves of the CgMCR2 objective
during the training on CIFAR-10, -100, TinyImageNet, MNIST, F-MNIST and
Dogs-120. As can be seen, the variation of these loss terms are consistent across



7

(a) CIFAR-10 (b) CIFAR-100 (c) TinyImageNet

(d) MNIST (e) F-MNIST (f) Dogs-120

Fig. B.3: Learning curves of each term in the CgMCR2 objective on CIFAR-10,
-100, TinyImageNet, MNIST, F-MNIST and Dogs-120.

(a) CIFAR-10 (b) CIFAR-100 (c) TinyImageNet

(d) MNIST (e) F-MNIST (f) Dogs-120

Fig. B.4: ACC and NMI curves of ΠΦ on CIFAR-10, -100, TinyImageNet, MNIST,
F-MNIST and Dogs-120.

all datasets. During the one-shot initialization, the term R(ZΘ; ϵ) initially in-
creases to its maximum to learn discriminative representations, and subsequently
the term LNcut(ΠΦ;A, γ) decrease to their local minimum as it learns parti-
tion information from the discriminative representations. During the fine-tuning,
both LNcut(ΠΦ;A, γ) and Rc(ZΘ,ΠΦ; ϵ) decrease to their global minimum, while
the value of R(ZΘ; ϵ) remains relatively constant.
ACC and NMI curves. We take the outputs of the cluster head ΠΘ as the
cluster membership and plot its ACC and NMI during each training iteration
on CIFAR-20, -100, TinyImageNet, MNIST, F-MNIST and Dogs-120 datasets.



8

In Fig. B.4, we can observe that our CgMCR2 converges and achieves the stable
clustering results on all tested datasets within 2,500 training iteration, or even
fewer.

References

1. Ding, T., Lim, D., Vidal, R., Haeffele, B.D.: Understanding doubly stochastic clus-
tering. In: International Conference on Machine Learning. pp. 5153–5165. PMLR
(2022)

2. Lim, D., Vidal, R., Haeffele, B.D.: Doubly stochastic subspace clustering. arXiv
preprint arXiv:2011.14859 (2020)

3. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine
learning research 9(11) (2008)


