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1 Introduction

We complement our main text with supplementary materials encompassing the
following components:
1. Theoretical Insights: This section contains main theoretical results, along

with an explanation of the rationale behind choosing Padé approximants
over more commonly used Taylor approximation, as discussed in Lemma 1.

2. Rationale for Enhanced Performance: This section elucidates the supe-
rior performance of the KD(C) framework, attributing it to three key factors:
(a) insights from penultimate visualizations, (b) considerations of inter-class
semantic similarities, and (c) the careful design of calibrators for the teacher
model.

3. Illustration of Generality: Included is Fig. S5, which provides a visual
demonstration of KD(C)’s versatility by comparing direct calibration with
the KD(C) framework. It also presents an example featuring the [5] regular-
izer.

4. Expanded Experimental Scope: We strengthen the KD(C) methodol-
ogy with additional experiments, covering various scenarios, including large-
to-small, small-to-large, self-distillation, and iterative self-distillation. These
experiments involve different descriptors and datasets.

5. Additional Results: We provide supplementary results that encompass cal-
ibration performance in the presence of dataset drift and reliability diagrams
featuring confidence histograms, as elaborated in Sec. 5.1.

6. Hyperparameter Analysis: A detailed study explores how calibration and
accuracy are influenced by various hyperparameters in the KD(C) frame-
work, as depicted in Fig. S8.

7. Source Code: The supplementary materials include the source code along
with a readme.md file, enclosed within the provided zip file.

8. Training and Compute Details: We furnish comprehensive information
on the specifics of training and compute resources employed in our experi-
ments.

9. Limitations and Broader Impact: This section delves into the limitations
of our research and contemplates its broader impact on the field.

These supplementary materials serve to enrich and provide a deeper under-
standing of our main findings and contributions.
⋆⋆ Equal contribution

https://github.com/rhebbalaguppe/CalibrationXferViaKD
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2 Theoretical support: Additional details

2.1 Proof of Theorem 1

The proof of Theorem 1 is contingent on several essential Lemmas, which will be
introduced beforehand. Lemma 1 and Lemma 2 capture the effect of quadratic
temperature scaling in the KD loss function, LKD. In particular, it is shown that
the partial derivative of LKD w.r.t. student’s logit for a given sample is equal to
the difference in predicted probabilities of the student and teacher classifiers for
that sample. These results are leveraged to characterize the first-order condition
of optimality for the total loss function Ltot w.r.t. parameters of the student
classifier.

Lemma 1. Let zi,s := W⊤
s xi and zi,t := W⊤

t xi with p̃i,s, p̃i,t be defined as
above. Then lim

T→∞
T (p̃i,s − p̃i,t) ≈ pi,s − pi,t.

Proof. The result follows as a consequence of Padé approximation. Recall that
from definition,

p̃i,s − p̃i,t =
1

1 + e−zi,s/T
− 1
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≈ 1
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1− zi,s
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1 +
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, (S1)

where the last approximation follows from Padé approximation of the exponen-
tial when T is large.

Thus, Eq. (S1) can be re-written as:

p̃i,s − p̃i,t =
1 + zi,s

/
2T

2
−

1 + zi,t
/
2T

2
=⇒ T (p̃i,s − p̃i,t) =

zi,s − zi,t
4

. (S2)

On the other hand, a similar analysis following the Padé approximation yields:

pi,s − pi,t ≈ (zi,s − zi,t)/4. (S3)

Thus, Lemma 1 follows directly from Eq. (S2) and Eq. (S3).

Remark: Padé approximants have a wider range of convergence than the corre-
sponding Taylor series, and can even converge where the Taylor series does not.
For a detailed exposition, please refer to Sec. 2.3 and Fig. S1.

The following result shows that the quadratic temperature scaling in the KD
loss function ensures that the gradients used to update the network weights are
independent of the smoothed labels.

Lemma 2 (Quadratic temperature scaling). Let LKD be defined as in
Eq. (2). Then,

lim
T→∞

∂LKD

∂zi,s
= pi,s − pi,t.
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Proof. Recall that by definition p̃i,s =
1

1 + e−zi,s/T
. The partial derivative of p̃i,s

w.r.t. zi,s reads:

∂p̃i,s
∂zi,s

=
1

T
p̃i,s(1− p̃i,s). (S4)

On the other hand,

∂LKD

∂zi,s
= −T 2

(
p̃i,t
p̃i,s

− 1− p̃i,t
1− p̃i,s

)
∂p̃i,s
∂zi,s

= T 2 (p̃i,s − p̃i,t)

p̃i,s(1− p̃i,s)

∂p̃i,s
∂zi,s

. (S5)

Thus, from Eq. (S4), Lemma 1 and for large T , Eq. (S5) reduces to:

lim
T→∞

∂LKD

∂zi,s
= pi,s − pi,t,

which completes the proof.

Lemma 3. The derivative of the total loss function Ltot w.r.t. the parameters
Ws of the student network lies in the span of X, and is given by:

∂Ltot

∂Ws
=

N∑
i=1

(pi,s − {αpi,t + (1− α)yi})xi.

Proof. The proof follows directly from Lemma 2.

Theorem 1. Let X ∈ Rd×N be the data matrix, and Ws and Wt represent the
parameters of the student and the teacher networks, respectively. Then, under
Assumption 1 and using the gradient-descent algorithm, the parameters Ws of
the student network converge to:

Ws ≈
{
αWt + 4(1− α)X(X⊤X)−1Y1/2, if N < d
αWt + 4(1− α)(XX⊤)−1XY1/2, else ,

where Y1/2 :=
[
yi − 1

2

]N
i=1

is an N -dimensional vector.

Proof. First observe that the minimum value of the total loss function in Eq. (2)
is finite. Moreover, the total loss function is convex in the parameters of the
student network. Thus, any gradient-based descent algorithm with suitable step-
size will converge to the optimizer asymptotically fast.

We now characterize the set of optimizers. Recall that the first-order condi-
tion of optimality implies:

∂Ltot

∂Ws
= 0 =⇒

∑N

i=1
(pi,s − {αpi,t + (1− α)yi})xi = 0,

where the last equality follows from Lemma 3. Since the vectors {xi} are linearly
independent (see Remark 1), the above equality holds if:

pi,s − {αpi,t + (1− α)yi} = 0, ∀i ∈ {1, . . . , N}. (S6)
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Expanding Eq. (S6) in terms of logits zi,s leads to:

1

1 + e−zi,s
= α

1

1 + e−zi,t
+ (1− α)yi =⇒ 1

1 +
1−

zi,s
2

1+
zi,s
2

≈ α
1

1 +
1−

zi,t
2

1+
zi,t
2

+ (1− α)yi,

(S7)

where the last equation follows from Padé approximation. Rearranging the terms
in Eq. (S7), and using the fact that zi,s = W⊤

s xi and zi,t = W⊤
t xi, one obtains:

(Ws − αWt)
⊤
xi = 4(1− α) (yi − 1/2) .

Since the above condition holds for every i ∈ {1, . . . , N}, the vector form of it
can be written as:

X⊤(Ws − αWt) = 4(1− α)Y1/2, (S8)

which, for N < d, is an underdetermined system of linear equations whose least-
norm solution is given by:

Ws = αWt + 4(1− α)X(X⊤X)−1Y1/2. (S9)

On the other hand, for N > d, (S8) represents an overdetermined system of
linear equations whose least-norm solution is given by:

Ws = αWt + 4(1− α)(XX⊤)−1XY1/2. (S9)

which completes the proof.

2.2 Proof of Theorem 2

Theorem 2. Let Assumption 1 hold. Let tc and tuc be two teacher classifiers
with output probabilities {pi,tc} and {pi,tuc

}, respectively. Also, let sc, suc de-
pict two student classifiers trained independently from the corresponding teacher
classifiers tc and tuc through KD, with output probabilities {pi,sc} and {pi,suc},
respectively. Furthermore, assume that the teacher classifier tc is well calibrated,
then the student classifier sc is also well calibrated. Conversely, if the teacher
classifier tuc is uncalibrated, the corresponding student classifier suc mimics a
similar behavior, i.e.,∑N

i=1
pi,sc =

∑N

i=1
yi, and

∑N

i=1
pi,suc

̸=
∑N

i=1
yi.

Proof. From Eq. (S6), the first-order condition for optimality for a student s
trained from a teacher t through KD reads:∑N

i=1
pi,s = α

∑N

i=1
pi,t + (1− α)

∑N

i=1
yi,
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which can be rewritten as

N∑
i=1

(pi,s − yi) = α

N∑
i=1

(pi,t − yi).

Thus for the same value of α ∈ (0, 1), if the teacher classifier sc is well calibrated,
then

N∑
i=1

(pi,sc−yi)=α

(
N∑
i=1

(pi,tc−yi)

)
= 0,

where, the last equality follows from well calibration of the teacher classifier. On
the other hand,∑N

i=1
(pi,suc

−yi)=α
∑N

i=1
(pi,tuc

−yi) ̸= 0 =⇒
∑N

i=1
pi,suc

̸=
∑N

i=1
yi,

which completes the proof.

2.3 Padé vs Taylor approximants

Fig. S1: Padé vs Taylor for a simple exponential function. Note that Padé approxi-
mants offer superior reliability compared to the extensively used Taylor approximants.
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Employing approximants to derive theoretical outcomes in DNNs is common-
place due to the intricacies of dealing with highly nonlinear equations. We illus-
trate the difference between Padé and Taylor’s approximation as follows: Padé
approximants have a wider range of convergence than the corresponding Taylor
series, and can even converge where the Taylor series does not. A simple exam-
ple of Padé approximant is, ex = e0.5x

e−0.5x ≈ (1+0.5x)
(1−0.5x) = (1 + 0.5x)(1 − 0.5x)−1,

which for |x| < 2 can further be expanded to ex ≈ (1 + 0.5x)(1 − 0.5x)−1 =
(1+0.5x)(1+0.5x+0.25x2+ . . . ). Thus, despite using first-order approximations
for both the numerator and denominator terms, the above Padé approximant
very closely follows the original exponential function. This is in contrast to Tay-
lor’s expansion, and even a second-order Taylor’s expansion does not mimic the
exponential function, except for a very small interval around the origin. Please
refer to Figure S1 for further details.

This is precisely why we restrict using Padé approximants in our theoretical
exploration since they are still potentially non-divergent in regimes even when
zi,t and zi,s are not vanishingly small. It must also be remarked that exact
characterization of weights of student network is a theoretically hard
problem, and such practical approximations are useful to obtain important
theoretical insights.

3 Rationale on the superior performance of our KD(C)
framework

The essence of Theorem 2 lies in its assertion that uncalibrated teachers can only
transfer their lack of calibration to their student counterparts, whereas calibrated
teachers enable the distillation of calibrated students. This theorem underscores
the crucial significance of utilizing calibrated teachers in the knowledge distilla-
tion process. In light of this observation, we advocate for a novel approach to
achieving accurate and calibrated models: calibrating a model through distilla-
tion from another model that is already calibrated. To validate the efficacy of this
approach, we conducted an extensive series of experiments, showcasing the capa-
bilities of our framework, KD(C). Our experimental results provide compelling
evidence that KD(C) yields student models characterized by two key attributes:
dynamic calibration at the sample level and semantic calibration. These find-
ings substantiate the effectiveness of our proposed framework in achieving both
sample-level and semantic calibration in student models.

3.1 Classification of label smoothing

Standard/static label smoothing. Label Smoothing (LS) serves as a regu-
larization technique designed to address potential inaccuracies within datasets.
It recognizes that maximizing the likelihood directly, denoted as P (y|x), may be
detrimental due to the possibility of errors in the training labels. To mitigate this
issue, LS introduces controlled noise into the labeling process. In essence, LS op-
erates as follows: Given a small constant value ϵ, it considers the training label y
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to be correct with a probability of (1−ϵ) and incorrect otherwise. Specifically, in
the context of a softmax model with k outputs, it replaces the traditional binary
classification targets of 0 and 1 with modified targets. These modified targets
consist of ϵ

(k−1) for incorrect labels and (1 − ϵ) for correct labels [12, 16]. This
approach ensures that all output probabilities undergo uniform regularization,
thereby helping to combat overfitting and improve model generalization.
Adaptive Label Smoothing. In this method the level of regularization applied
to training labels, which are typically one-hot encoded, is dynamically adjusted
based on the network’s output probabilities for different classes [2, 5, 13]. This
method is found to be more beneficial than conventional static label smoothing
(LS) proposed in [16].
Conditional Label Smoothing. In this method the training labels go through
selective modifications based on specific criteria, such as the application of
margin-based penalties [10]. This approach places its emphasis on and applies
regularization solely to the probabilities that exhibit miscalibration, thereby
demonstrating enhanced calibration capabilities.

3.2 Visualization of penultimate layer’s activations reveal KD(C)
using dynamic regularization works better than static
regularization

Penultimate Visualization. [12] introduced this visualization technique wherein
they projected the penultimate activations onto the hyperplane defined by the
template vectors (weight vectors) corresponding to the selected classes (three
classes) for visualization.
Systematic diffusion. The concept of “systematic diffusion ", introduced by [1],
was developed to address discrepancies observed in prior studies, particularly the
contradictions between [14] and the insights presented in LS literature [12]. This
concept aims to elucidate the compatibility of label smoothing with knowledge
distillation. The findings from [1]’s work indicate that when KD is conducted
at elevated temperatures from a teacher model trained with LS, it results in a
systematic shift in the relationships between classes. Specifically, for semanti-
cally similar classes, the inter-cluster distance decreases, while for the remaining
classes, it increases relatively. Importantly, this diffusion of classes is not random;
rather, it follows a systematic pattern.

In Fig. S2 and Fig. S3, we provide visual evidence of the limitations associ-
ated with LS-trained teachers compared to MDCA teachers [5]. These penultimate
layer visualizations, inspired by the work of [14], reveal that semantically similar
classes experience systematic diffusion when using LS, whereas this phenomenon
is not observed with MDCA calibration. This observation substantiates our rec-
ommendation to opt for dynamic smoothing regularization techniques such as
MDCA.

Notably, we notice a trend where distilled student models are most calibrated
when the distillation temperature (T ) is approximately 1. We hypothesize that
increasing T leads to the destruction of discriminating features, as outlined by [1],
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Fig. S2: Visualization of penultimate layer’s activations (Teacher = ResNet56,
Student = ResNet8, Dataset = CIFAR100). We train ResNet8 using calibration tech-
niques: KD with LS [16] (Left column) and KD with MDCA [5] Column). We follow
the same setup and procedure used in papers [ [12, 14]] We use two semantically simi-
lar classes (bowl, plate) and one semantically dissimilar class (willow_tree). A ‘*’ in
the plot for each cluster represents its cluster’s centroid. A well-calibrated teacher can
effectively capture the inter-class relationships and serve as a reliable dynamic label
smoothing prior such as MDCA [5]. Observe that the classes: bowl and plate are visually
similar and hence the penultimate visualizations of these classes should be closer than
the dissimilar class: willow_tree. As the temperature T is increased the similar classes
diffuse into one in the case of KD with LS while KD with MDCA offers better separation,
retaining the semantic similarity while being well separated from the dissimilar class.

due to systematic diffusion among highly similar classes as seen in the penul-
timate representations. These discriminating features are crucial for achieving
calibration by resolving confusion among similar classes. However, as T increases
further, we simultaneously amplify the relationships between somewhat related
classes [17], while diminishing the relationships between very similar classes. This
nuanced understanding highlights the intricate interplay between temperature,
class relationships, and calibration, shedding light on the optimal conditions for
achieving calibration in KD scenarios.

4 Illustration of the generality of KD(C) framework

Fig. S5 presents a novel framework KD(C) that leverages calibrated teachers
through KD to produce DNNs with the least calibration error. This comprehensive
framework encompasses the full spectrum, enabling models with varying capacity
(smaller/larger) to distill student models with the least calibration error and
better accuracy compared to the SOTA post-hoc/train-time calibration methods.
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Fig. S3: Visualization of penultimate layer’s activations (Teacher = ResNet56,
Student = ResNet8, Dataset = CIFAR100). We train ResNet8 using calibration tech-
niques: KD with LS (Left column) and KD with MDCA(Right Column). We follow the
same setup and procedure used in papers [ [12, 14]] We use two semantically similar
classes (man, boy) and one semantically dissimilar class (crab). A ‘*’ for each cluster
represents its cluster’s centroid. A well-calibrated teacher can effectively capture the
inter-class relationships and serve as a reliable dynamic label smoothing prior such as
MDCA [5]. Observe that the classes: man and boy are visually similar and hence the penul-
timate visualizations of these classes should be closer than the dissimilar class: crab.
As the temperature T is increased the similar classes diffuse into one in the case of KD
with LS while KD with MDCA offers better separation, retaining the semantic similarity
while being well separated from the dissimilar class.

5 Additional Results

5.1 Reliability diagrams and Confidence Histograms

Reliability diagrams serve as effective visual aids for assessing the calibration of
DNNs. They involve partitioning the predicted probabilities generated by DNNs
into a predetermined number of bins along the x-axis. The y-axis represents
the normalized count of events (e.g., class = “dog") within each bin. A well-
calibrated model will exhibit points that closely align with the main diagonal,
spanning from the bottom left to the top right of the plot. Reliability diagrams
corresponding to Fig. S6 are included to show that KD(C) variants obtain near
SOTA results.

5.2 Effect of hyper-parameters like T (temperature) and α

We investigate the influence of hyperparameters T and α on both calibrated and
uncalibrated teacher models, as visually depicted in Fig. S7 (big-to-small) and
Fig. S8 (small-to-big).
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Fig. S4: [Study of ECE variablity in case of KD(C), specifically we consider KD
with LS and KD with MDCA and study variation of accuracy and calibration as
a function of temperature]: Comparison of Top 1% accuracy and ECE when train-
time calibration method is changed from Label Smoothing [16] and MDCA [5]: We use
ResNet56 teacher on CIFAR100 and distill to ResNet8. Note that MDCA-based students
have lower accuracy than NLL, however, ECE is largely stable when temperature T is
varied.

(a) Big teacher, Small student: In this scenario as we increase the value
of α, we witness an intuitive rise in calibration. However, this effect is predom-
inantly noticeable for small values of T (depicted in the bottom-right region of
Fig. S7). Generally, the calibration errors (ECE) incurred by distilling students
from a calibrated teacher tend to be markedly lower than those distilled from
an uncalibrated teacher, as evident from the bottom row in Fig. S7. (b) Small
teacher, Big student: Initially, we observe an expected trend: as α increases
(signifying a higher dependence on the teacher), accuracy experiences a decrease.
This outcome arises from the process of distillation from a weaker teacher. How-
ever, when distilling from a calibrated teacher, we discern that elevating α results
in enhanced calibration. Nevertheless, this improvement in calibration is accom-
panied by a trade-off with accuracy.

Notably, we find that optimal calibration is generally achieved when T ≈ 1,
regardless of the size of the teacher model employed. This observation aligns
with the findings presented in [15], which suggest that maximizing fidelity with
the teacher model yields the best transfer of properties.

5.3 Calibration Performance under dataset drift

DNNs are found to be over-confident and highly uncalibrated under dataset/domain
shift [19]. We investigate the robustness of our method KD(C) by examining the
degradation in calibration under natural/non-semantic shift (images with the
same label but different distribution). We carry out this study for ResNet56 pre-
trained on the CIFAR100 dataset along with various calibration techniques and
report the evaluation results on CIFAR100-C [6] in Fig. S9. We used ResNet56
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ResNet-110 ResNet-56 ResNet-32 ResNet-8

Cal   (73.9, 1.1)

Uncal (75.9, 9.8)

Trained from Scratch Trained from Scratch Trained from Scratch Trained from Scratch

KD Trained KD Trained KD Trained

KD-C  (74.7↑, 1.3↑)

KD-UC (76.4↑, 9.6↓)

KD-C  (71.3↑, 1.3↑)

KD-UC (72.6↑, 6.6↓)

KD-C  (71.5↑, 0.8↑)

KD-UC (71.4↑, 1.0↑)

KD-C  (69.8↑, 1.4↑)

KD-UC (70.7↑, 7.2↓)

KD-C  (61.1↑, 1.1↑)

KD-UC (61.1↑, 5.8↓)

Cal   (69.2, 3.2)

Uncal (71.7, 10.9)

Cal   (66.8, 1.6)

Uncal (67.8, 13.4)

Cal   (58.3, 1.3)

Uncal (59.8, 8.0)

Big to Small KD

Self KD

Small to Big KD

Legend

(Top1(%), ECE(%))

Improvement over Cal↑

↓ Degradation over Cal

* High values of  Top1 and low values of  ECE are better

*

Fig. S5: An illustration of KD(C) framework’s generality using calibration
method as MDCA. We can distill a calibrated student from a large teacher and
vice-versa yielding SOTA calibration without any trade-offs in accuracy. “Uncal” and
“Cal” mean uncalibrated and calibrated teachers trained using NLL and a recent SOTA
calibration technique [5] respectively. KD(UC) and KD(C) refer to students distilled
using “Uncal” and “Cal” teachers respectively. Going from a large calibrated teacher to
a smaller student yields SOTA calibrated student, with an additional boost in accuracy
(E.g., compare ResNet56 “Trained from scratch” with ResNet56 “KD-trained” student
from ResNet110). Self-distillation and going from a smaller teacher to a bigger student
also have a similar effect on calibration, however, the gains in accuracy are comparable
to respective models trained from scratch. The above results are on CIFAR100.

models that were trained with ResNet110 as teacher for KD(UC) and KD(C).
We observe KD(UC) and KD(C) achieve the highest accuracy across all sever-
ities, with the latter achieving close to the best ECE (LS achieves best ECE),
however, KD(C) achieves the best AUROC score in comparison to any other cali-
bration technique. This indicates, KD(C) is better across all metrics measuring
reliability (be it calibration or refinement, while also giving an additional boost
in accuracy).

6 Results on ImageNet

Due to limited computational resources, conducting a wide range of experiments
is challenging. To address this, we have employed ImageNet-100 (IN100 PyTorch
Implementation: Training ResNets on ImageNet-100 at tinyurl.com/mr3cr8rd)
as a proxy to estimate performance on the full ImageNet-1K dataset. ImageNet-
100 is a subset of ImageNet-1K, consisting of 100 randomly selected classes,
allowing us to work with a higher resolution dataset (224 × 224) compared to
the smaller Tiny ImageNet (64 × 64) dataset previously reported. ?? presents

tinyurl.com/mr3cr8rd
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Table T1: [Self-distillation] using MobileNetV2 feature extractor on Tiny-ImageNet
dataset. Note that the main paper reported self-distillation results using the
MobileNetV2 feature extractor on the CIFAR10 dataset. Top3 best KD(C) variants

are reported. KD with MDCA variant of KD(C) achieve competitive calibration results
with SOTA.

Calibration Method Top1 (%) ECE (%) SCE (%) ACE (%)
↑ ↓ ↓ ↓

NLL 50.43 13.72 0.24 13.72
LS [16] 51.20 3.84 0.19 3.88
CE with TS [4] 50.43 13.72 0.24 13.72
MMCE [9] 50.30 11.32 0.21 11.32
MixUp [18] 52.02 4.74 0.19 4.73
PSKD [7] 53.66 13.27 0.21 13.27
MDCA [5] 46.81 1.52 0.19 1.11
CPC [2] 51.27 12.01 0.21 12.01
MbLS [10] 50.11 8.87 0.20 8.87
ACLS [13] 56.60 7.13 0.17 7.06

KD with NLL 49.31 4.20 0.20 4.20

Ours (KD with MDCA) 45.79 0.85 0.21 1.17
Ours (KD with LS) 49.69 2.69 0.19 2.68
Ours (KD with MbLS) 49.33 2.86 0.20 2.89

Method ImageNet-100
Top1 (%) ↑ AUROC ↑ ECE (%) ↓ SCE (%) ↓ ACE(%) ↓ smECE(%) ↓

×10−2 ×10−3 ×10−3 ×10−2

NLL 67.56 99.68 05.37 00.31 00.12 05.37
KD + NLL 67.67 99.69 04.79 00.29 00.13 04.67

MDCA 68.54 99.62 07.01 00.32 00.16 07.01
KD + MDCA (Ours) 68.32 99.64 02.84 00.27 00.13 02.82

FL 67.90 98.84 67.70 00.55 01.74 38.81
KD+FL+MDCA (Ours) 68.52 99.52 43.05 00.65 00.85 35.93

Table T1: Illustration of generalisability to largescale datasets: ImageNet-1K

results for several methods, with all KD variants trained for only 25 epochs, yet
still demonstrating improved calibration performance.

7 Computational Complexity

Post-hoc calibration methods are simple to implement and require only a small
validation set with few parameters. In contrast, train-time methods involve all
model parameters and do not need separate validation data, which can lead to
better generalization and effectiveness. Training student models through KD from
calibrated teachers adds minimal complexity compared to standard NLL training
of students. However, KD(C) does require access to pre-calibrated teacher models.
If such models are unavailable, KD(C) necessitates an initial step of training and
calibrating a teacher, which introduces some computational overhead. Despite
this potential additional step, the trade-off is generally worthwhile. The signifi-
cant improvements in model reliability achieved through KD(C) justify the extra
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computational effort, especially in applications where model trustworthiness is
crucial.

Table T1: [Effect of TS on KD(C)]:The student is calibrated by distilling from
an MDCA calibrated teacher KD with MDCA (a variant of KD(C)). The table shows that
further temperature scaling (TS) does not impact the models trained with KD with
MDCA as they are calibrated to start with. Parameters: WRN-40-1: 0.56M ; WRN-40-2:
2.24M ; MNV2: 2.25M

Dataset Teacher Model Student Model Temperature Top1 (%) ECE (%) SCE (%) ACE (%)

C
IF

A
R

10
0

WRN-40-2 WRN-40-1

0.10 71.06 26.40 0.55 26.39
0.20 71.06 23.79 0.52 23.79
0.50 71.06 15.74 0.38 15.74
0.75 71.07 8.44 0.27 8.44
1.00 71.06 0.98 0.20 1.10
1.25 71.06 8.60 0.27 8.60
1.50 71.06 18.00 0.42 18.00
1.75 71.06 27.11 0.58 27.11
2.00 71.06 35.22 0.74 35.22
2.25 71.06 41.99 0.88 41.99
2.50 71.06 47.39 0.99 47.39
2.75 71.06 51.60 1.07 51.60
3.00 71.06 54.86 1.12 54.86
3.25 71.06 57.37 1.13 57.37
3.50 71.06 59.32 1.11 59.32
3.75 71.06 60.86 1.07 60.86
4.00 71.06 62.08 1.00 62.08
4.25 71.06 63.06 0.92 63.06
4.50 71.06 63.86 0.81 63.86
4.75 71.06 64.52 0.69 64.52
5.00 71.06 65.07 0.56 65.07

WRN-40-2 MNV2

0.10 68.67 30.64 0.64 30.64
0.20 68.67 27.69 0.60 27.68
0.50 68.67 18.50 0.44 18.50
0.75 68.67 10.65 0.30 10.65
1.00 68.67 1.52 0.20 1.64
1.25 66.40 5.27 0.23 5.26
1.50 68.67 13.09 0.34 13.09
1.75 68.67 20.54 0.47 20.52
2.00 68.67 27.34 0.60 27.34
2.25 68.67 33.37 0.71 33.37
2.50 68.67 38.53 0.81 38.53
2.75 68.67 42.85 0.90 42.85
3.00 68.67 46.39 0.96 46.39
3.25 68.67 49.27 1.00 49.27
3.50 68.67 51.61 1.02 51.61
3.75 68.67 53.50 1.01 53.50
4.00 66.40 55.04 0.99 55.04
4.25 68.67 56.31 0.95 56.31
4.50 68.67 57.35 0.90 57.35
4.75 68.67 58.22 0.83 58.22
5.00 68.67 58.94 0.77 58.94
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8 Training details

In this section, we provide a detailed summary of the hyperparameters and
training techniques used, in order to ensure reproducibility. All models have been
trained on 40GB Nvidia A100 GPUs. The code was written using the PyTorch
framework. We make use of automatic mixed precision training in order to reduce
training time. We borrow some code from the official implementation of [5,11,20].

For CIFAR10/100 datasets, we train all ResNets / WideResNets models
using a learning rate of 0.1 for 160 epochs. The learning rate is decayed by a
factor of 10 at epoch 80 and 120. We use SGD optimizer with momentum 0.9
and weight decay of 5e − 4. We use a batch size of 128. For the larger models
like ResNet-110, we train them using a learning rate of 0.05 for 240 epochs. The
learning rate is decayed by a factor of 10 at epoch 150, 180 and 210. We use
SGD optimizer with momentum 0.9 and weight decay of 5e− 4. We use a batch
size of 64.

For Tiny-ImageNet dataset, all models are trained using a maximum learning
rate of 0.1 with a cosine annealing learning rate with a warmup of 1000 steps
with minimum learning rate 1e−5. The weight decay and momentum are 5e−4
and 0.9 respectively. We train the models for 100 epochs with a batch size of
128.

For training students using KD, we use the same hyper-parameters for the
respective datasets. For big-to-small KD (e.g. WideResNet-40-2→ WideResNet-
40-1), we grid search T (temperature) and α (distillation weight) in the ranges
{1, 1.5, 2, 3, 4, 5, 10, 20} and {0.9, 1.0} respectively. For small-to-big KD and self-
distillation (e.g. MobileNetV2 ↓ DenseNet-121, MobileNetV2 → MobileNetV2),
we grid search T and α in the ranges {1, 1.5, 2, 3, 4} and {0.1, 0.3, 0.5, 0.7, 0.9, 1.0}
respectively.

For baselines, we use the recommended hyperparameters as suggested by the
respective authors [2,3,5,7,8,10,13,16,18], i.e. for LS [16], we use smoothing of
0.1; for PSKD [7] we use α = 0.8; for MixUp [21] the mixup hyperaparameter
was taken as 0.4 as it was reported to be the best by the authors, for MDCA [5],
we grid search for the best performing β ∈ {1, 5, 10} and γ ∈ {1, 2, 3, 4, 5};
For MMCE [8], we grid search for the best performing β ∈ {1, 2, 3, 4, 5}. For
ACLS [13], we set the margin (M) to 6 for CIFAR-10 and CIFAR-100, and 10
for Tiny-ImageNet dataset as recommended.

9 Reproducibility

In the spirit of reproducible research, we intend to make the source code available
post-acceptance. To aid reviewers, the source code for our approach is attached
along with the supplemental material. Details of our setup and implementation
of the baselines can be found at: Code/README.md folder.
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10 Limitations

While our work paves way to create optimal lightweight models that are both ac-
curate and calibrated, it is important to acknowledge three potential limitations
that we plan to address in future research - (a) principled approach to select
hyperparameters, such as the temperature T , distillation weight α, calibration
regularization coefficient β, and characterization of optimal student-teacher ca-
pacity difference for best calibration, (b) extending theoretical insights to general
nonlinear networks, (c) benchmarking KD(C) on natural language processing
(NLP) tasks, particularly when the teacher networks belong to the family of
large language models (LLMs).

11 Broader Impact

Bigger DNN models aren’t necessarily better models. From a deployment stand-
point, the size of the weights affects the inference time and storage constraints
on edge devices which is crucial in applications such as augmented reality and
robotics. Our proposed algorithm has the potential to be employed in trust-
worthy lightweight models on the edge. In our endeavor to deploy lightweight
models that are also reliable, we delve into the realm of knowledge distillation,
extending its traditional function of transferring accuracy from teacher networks
to student networks. Through this exploration, we have discovered a novel ap-
proach to calibrating models effectively. We present, arguably for the first time,
compelling evidence that model calibration can be achieved without sacrificing
accuracy through knowledge distillation. Notably, our implementation of knowl-
edge distillation not only guarantees enhanced model calibration but also out-
performs the accuracy obtained through conventional training from scratch in
specific cases. This innovative approach enables us to simultaneously accomplish
the dual objectives of optimal calibration and improved accuracy.

Towards this end, we provide extensive theoretical findings that extend be-
yond the realms of accuracy transfer and calibration alone. We show, through
optics of linear teacher and student networks, that the optimization of student
network weights through knowledge distillation enables them to exhibit simi-
lar behavior and performance as their respective teachers (see Theorem 1 in
the main text). Subsequently, the scope of producing trustworthy models can
also be extended to incorporate characteristics, such as fairness and refinement.
On a more specific note, Theorem 2 in our work shows that there is a definite
advantage of working with calibrated teachers over uncalibrated teachers, i.e.,
calibrated teachers tend to produce calibrated students without compromising
on accuracy. Hence our approach, KD(C), centers around train-time calibration
of teacher models, enabling them to generate accurate and optimally calibrated
students through knowledge distillation. Significantly, based on our empirical
evaluations, it is evident that the transfer of calibration operates bidirection-
ally. This means that larger calibrated models can be utilized to create smaller
calibrated models, and conversely, smaller calibrated models can also serve as a
foundation for generating larger calibrated models.
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Overall, the research contributes to the advancement of model calibration,
accuracy, trustworthiness, and scalability, which can have significant implications
in various fields relying on the deployment of reliable and lightweight models.
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Fig. S6: Reliability Plots for top-5 KD with (Ours) techniques on WideResNet-40-1
on CIFAR100. Teacher used: WideResNet-40-2. KD(C) framework achieves competitive
calibration results for KD with MDCA, KD with AdaFocal and KD with MixUp.
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Students from Uncalibrated Teacher Students from Calibrated Teacher

Fig. S7: We study the effect of varying temperature, T and distillation weight α, on
ECE and top 1% accurracy when ResNet56 teacher model is used and ResNet8 as student
on CIFAR100 dataset. Observe the optimal values of ECE and top 1% accuracy when T
is set around 1. For calibration KD with MDCA was used.
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Students from Uncalibrated Teacher Students from Calibrated Teacher

Fig. S8: We study the effect of varying temperature, T and distillation weight α, on ECE
and top 1% accuracy when ResNet32 teacher model is used and ResNet56 as student
on CIFAR100 dataset. KD with MDCA was used for calibration.
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KD(C)

KD(UC)
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LS
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Fig. S9: Robustness to corruption, tested on CIFAR100-C dataset [6] using ResNet-56.
KD(UC) and KD(C) were trained using ResNet-110 as a Teacher. Note that KD(C)
provides a good trade-off between accuracy and calibration, at the same time achieving
the highest AUROC (even though LS outperforms KD(C) by a tiny margin in terms of
calibration, KD(C) has significantly better AUROC and accuracy. AUROC indicates
better inter-class separability in classifiers thereby enhancing trustworthiness in addi-
tion to calibration benefits. KD(C) uses KD with MDCA variant.
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Fig. S7: Comparative study of accuracy vs. calibration trade-offs asso-
ciated with existing calibration techniques and ours (Top-left is most
preferred): The mean and one standard scatter error bars for Top1, ECE and
SCE of WideResNet-40-1 trained on CIFAR100 using SOTA calibration techniques.
WideResNet-40-2 was used as Teacher for KD(UC) and the proposed, KD(C) variants.
Note: KD(C) variants (magenta, cyan, and green) achieve the best results in terms of
ECE, ACE and SCE, along with slight boosts in Top1 (an inherent KD-property). Fur-
ther, the lower variances emphasize the reliability of KD(C) variants. All plots were
generated by training WideResNet-40-1 models through every calibration technique on
3 runs.
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