
Supplementary Materials of "ADSP: Advanced
Dataset for Shadow Processing, enabling visible

occluders via synthesizing strategy."

Chang-Yu Hsieh1 and Jian-Jiun Ding1

Grad. Inst. Commun. Eng., National Taiwan University, Taiwan
darkrepulser.ray@gmail.com jjding@ntu.edu.tw

1 Experimental setup details

In this section, we provide implementation details about Domain Shift Valida-
tion (i.e. Sec 4.2. in main text) and Comparison with State-of-the-Art Methods
(i.e. Sec 4.4. in main text).

Dataset division There are four benchmarks (SRD[Qu+17], ISTD[WLY18],
DESOBAv2[Liu+24], and our ADSP) included in our work. First, we used the
official splitting for two popular datasets for the removal tasks (SRD and ISTD),
as shown in Tab. 1. Second, because the DESOBAv2 was built for shadow gen-
eration, its original form is not feasible for training supervised shadow removal
algorithms. Specifically, for shadow images in the DESOBAv2, there might be
multiple separate shadows in a single image. On the other hand, the provided
shadow-free data might be a set of images. In such sets, each image consists
of incomplete shadow-free information, i.e., only shadow in a specific target re-
gion was removed. Moreover, every shadow-free set’s union might contain some
shadows that have not been removed. Figure 1 demonstrate a example of shadow-
free image set in DESOBAv2. We found that all six images contained limited
shadow-free information, only the golf balls, while the most evident shadows cast
by two people were not included. Thus, we stated this condition in the main text
as "partial-shadow-free information". In our work, we combined shadow-free im-
ages/shadow masks with the same prefix and synthesized ground truth as cleanly
as possible. There are 20296 pairs after combination (originally 26407 shadow-
free images). We randomly pick 296 images from them as the testing set and the
remaining 20000 as the training set. Third, for the proposed ADSP, we adopted
random splitting to form training (1100 pairs) and testing (120) sets.

Improved metrics calculation As stated in Sec 4.2. in the main text, we
improved the metrics calculation method and reported the results of the new
evaluation algorithm. Many previous papers adopt RSME, PSNR, and SSIM of
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Fig. 1: A shadow-free image set example from the DESOBAv2. The first row is all
shadow-free images with the prefix 21, and the second is the corresponding shadow
masks. Six removed shadows belong to golf balls, and the large shadows cast by two
men were not eliminated.

Table 1: Number of pairs in training/testing set of each used benchmark. Note that
there are initially 408 pairs in the testing set of the SRD. We excluded 15 images that
do not have the corresponding masks.

Set\Benchmark SRD[Qu+17] ISTD[WLY18] DESOBAv2[Liu+24] ADSP (ours)
Training 2680 1330 20000 1100
Testing 393 540 296 120

the whole image, shadow region, and non-shadow region to indicate the perfor-
mance of different parts of the results. Where the commonly steps for calculating
region metrics is as follows:

1. Determining the target (interest) region by the mask, usually shadow mask.
2. Assigning a substitute value (usually 0) to replace the original RGB value

of the non-interest region.
3. Calculating each metric value on such post-processed image.

The first, second, and fifth columns of Fig. 2 show the evaluation results
following the above steps. Evaluating the shadow region will assign the non-
shadow region with zero value (i.e. the black area) and vice-versa. The metrics
value of the shadow region seems to be better than those of the whole image.
It is unreasonable because the bias of the two images primarily comes from the
shadow region. We ascribe this to the inappropriate prior of viewing the non-
interested region of the image as totally correct, which affects the precision of
evaluation, especially for images with a low ratio of shadow region. Therefore,
we adopted an improved procedure to do evaluation, as follows:

1. Determining the target (interest) region by the mask, usually shadow mask.
2. Filtering the non-interest region out and calculating each metric value only

on region which was not filtered.
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Fig. 2: An evaluation sample using two algorithms.

The third and fourth columns of Fig. 2 show the results of the improved
procedure. The excluded region (i.e., the transparent area) will not participate
in the metrics calculation. In this way, both RSMEs and PSNRs follow the correct
order of non-shadow, whole, and shadow. However, this improved process has the
side effect of relatively lower shadow region metrics value than previous works.

2 Reproduction

In this section, we give detailed experimental setups about the proposed
SRRN, hoping that is helpful to the reader who wants to reproduce our result.
Note that we adopted a different reference style to present the citations in the
supplementary document to avoid confusion with indexes of citations in the main
text.

Overview The SRRN contains three subnetworks. Stage one (θsr) concentrates
on conducting preliminary removal. Stage two (θca and θbs) aims to refine the
results from Stage one in two aspects (shadow area color adjustment and shadow
boundary smoothing). As mentioned in the main text, we trained the SRRN with
two stages. The detailed steps are as follows:

1. We first trained θsr by the mixed data from the SRD[Qu+17], the ISTD[WLY18],
and the proposed ADSP, where the mask information of the SRD applied
the results of shadow detection from Cun et al. [CPS20].

2. We conduct preliminary removal with pre-trained θsr on both training and
validation sets of the ADSP and generate elementary removal results.

3. We trained θca and θbs on the preliminary recovered ADSP in step 2. At the
same time, the penumbra loss was included to constrain the output of θbs.

Stage 1. The hyper-parameters to train θsr are summarized in Table 2:
θsr contains the input of three shadow patches and the corresponding shadow

mask patches in a single batch. They were randomly cropped from the original



4 C. Hsieh and J. Ding

Table 2: Detailed setups of θsr in the proposed SRRN.

Backbone ShadowFormer [Guo+23]

Basic Epoch 500
Batch size 3

Input

Resizing size -
Cropping size 320 x 320 x 3

Float point accuracy float32
Value range [0, 1]

Augmentation 1 Randomly rotation/vertical flip
Augmentation 2 Randomly mix images within batch

Optimizer AdamW[LH19] lr = 2e− 4, β = [0.9, 0.999]
eps = 1e− 8, weight_decay = 0.02

Scheduler Gradual Warmup multiplier = 1, total_epoch = 3
Cosine Annealing T_max = 497, eta_min = 1e− 6

Loss function Total model Charbonnier Loss

images in the combined dataset. The cropping patch is square with a side length
of 320 pixels. Thus, shadow patches and masks have the shape of (3, 3, 320,
320) and (3, 1, 320, 320), respectively. The adopted data augmentation method
consists of two parts. The first part has regular random rotation (0, 90, 180, or
270 degrees) and random flip (no flip or vertical flip). Therefore, there are eight
possible combinations based on the above two kinds of augmentation methods.
Every batch applied one of the above eight augmentations in the entire training
process. The second part is to perform patch mixing within a single batch after
epoch 5. The detailed steps are as follows:

1. Generate a copy of a single batch and shuffle its order.
2. Sample a set of numbers from the Beta distribution, where two concentration

parameters are all 1.2, i.e. α = β = 1.2.
3. Mix the original and permuted batch using the weights from the sampled

set above.

Two schedulers make the learning rate rise from 0 first and then reduce.
The peak is at epoch 3, i.e., total_epoch of the Gradual Warmup Scheduler.
Then, the learning rate decays following the Cosine Annealing Scheduler. θsr
was constrained by the Charbonnier Loss, as shown in Eq. (1).

LCharbonnier(Igt, Ideshadow) =
√
(Igt − Ideshadow)2 + ϵ2, ϵ = 10−3. (1)

Stage 2. The hyper-parameters to train θca and θbs are as in Table 3:
In this stage, θca and θbs process training pairs 1 × 1. Every pair was first

resized into 448 by 448 and then randomly cropped as the patches with size
400 by 400. Then, shadow and shadow-free images are converted from RGB
to the LAB color space and normalized into [−1, 1]. In the data augmentation
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Table 3: Detailed setups of θca and θbs in the proposed SRRN.

Backbone SG-ShadowNet[Wan+22]

Basic Epoch 200
Batch size 1

Input

Resizing size 448 x 448
Cropping size 400 x 400

Float point accuracy float32
Preprocessing Normalized on LAB space
Augmentation Randomly horizontal flip

Optimizer Adam[KB15] lr = 2e− 4, β = [0.5, 0.999]

Scheduler Handcraft Linearly decay to 0 from the epoch 50

Loss function
θca L1 loss, shadow area loss

θbs
L1 loss, shadow area loss,

spatial consistency loss, penumbra loss

process, we only adopted random horizontal flips. The scheduler is handcrafted
linearly attenuated, making the learning rate the same as the initial value, i.e.,
2e-4, during the first 50 epochs and reduced linearly to 0 during the remaining
epochs.

Two subnets were supervised by a composite loss function Loverall containing
six terms from three kinds of loss functions shown as follows. The pixel-level
reconstruction loss LR is the L1 loss of the deshadowed image Ideshadow and the
ground truth Igt. The area loss LA is another L1 loss with a mask M indicating a
specific target region. The last one is the spatial consistency loss Lspa [Guo+20].

LR(Ideshadow, Igt) = ||Igt − Ideshadow||1, (2)
LA(Ideshadow, Igt,M) = ||Igt ⊗M − Ideshadow ⊗M ||1, (3)

Lspa =
1

K

K∑
i=1

∑
j∈Ω(i)

(|Yi, Yj | − |Vi, Vj |)2, (4)

where ⊗ denotes the Hadamard product and M is the mask of the target region.
For Lspa, K is the number of local areas, Ω(i) represents the 4-adjacent areas
of area i, and Y and V are the average intensity values of these local areas on
Ideshadow and Igt, respectively.

Thus, the complete composite loss function Loverall is as follows:

Loverall = Lca
R + Lbs

R + Lca
A + Lbs

A + 10 Lbs
spa + λ Lbs

penumbra

= LR(I
ca
out, Igt) + LR(I

bs
out, Igt)

+ LA(I
ca
out, Igt,Ms) + LA(I

bs
out, Igt,Ms)

+ 10× Lbs
spa

+ λ× LA(I
bs
out, Igt,Mp)

(5)
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Fig. 3: Examples of the generated penumbra mask. The kernel size and the number of
iterations of dilation and erosion are 5 and 2, respectively.

where each term has a subscript to indicate the type and a superscript to indicate
the model. Therefore, Icaout and Ibsout mean the outputs of θca and θbs, respectively,
Ms is the shadow mask, and Mp is the penumbra mask. λ is the weight to
control the penumbra loss and the hyper-parameter. Their optimization has
been discussed in ablation studies.

Penumbra mask. As stated in the main text, we computed the penumbra
masks Mp by subtracting the eroded shadow mask from the dilated shadow
mask shown as follows.

Mp = Dilation(Ms;K = 5; iter = 2)− Erosion(Ms;K = 5; iter = 2) (6)

where Dilation(·;K; iter) and Erosion(·;K; iter) represent morphological dila-
tion and erosion operations with kernel K of an adjustable size k×k and the iter-
ation number of iter, respectively. In our implementation, we set k = 5, iter = 2.

Figure 3 shows some examples of the generated penumbra mask. The resul-
tant masks cover most transition bands between the shadow and non-shadow
regions where the boundary effect often appears.

Comparison with SOTA Methods on popular ISTD/SRD In this sec-
tion, we provide comparisons with SOTAs on two popular benchmarks. Table 4
and Tab. 5 show comparison results on the ISTD and the SRD, respectively.
Apparently, the SRRNs do not achieve the same leading place as Sec 4.4. We
ascribe this to the second stage of the SRRN. As mentioned above, in the sec-
ond stage of training, we applied only the proposed ADSP as the training set
to acquire better refinement results. However, even so, two SRRNs also surpass
most of the SOTAs, proving the effectiveness of our three-stage design.
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Table 4: The quantitative results of shadow removal using our models and recent
methods on the ISTD[WLY18].

Method RMSE ↓ PSNR ↑ SSIM ↑
Whole shadow non-shadow Whole shadow non-shadow Whole

Input Image 26.826 58.165 15.904 20.33 13.35 25.67 0.8843
Mask-ShadowGan 15.988 22.863 14.292 24.83 21.76 26.06 0.8978
DC-ShadowNet 19.582 26.169 17.760 23.07 20.45 24.09 0.8764

Fu et al. 15.712 17.252 15.561 25.33 24.77 25.77 0.8946
SG-ShadowNet 9.886 13.196 9.017 29.29 26.71 30.32 0.9225

BMNet 10.777 15.487 9.702 28.50 25.16 29.70 0.9211
SpA-Former 14.778 19.925 13.465 25.78 23.32 26.75 0.8917

ShadowFormer 8.733 11.468 7.985 30.64 28.00 31.66 0.9289
SADC 10.816 16.226 9.409 28.39 24.74 29.99 0.9232

Ours (λ = 1) 9.265 13.053 8.224 29.91 26.80 31.19 0.9227
Ours (λ = 10) 9.399 13.316 8.321 29.69 26.47 30.98 0.9229

Table 5: The quantitative results of shadow removal using our models and recent
methods on the SRD[Qu+17].

Method RMSE ↓ PSNR ↑ SSIM ↑
Whole shadow non-shadow Whole shadow non-shadow Whole

Input Image 37.294 71.964 13.254 17.85 11.51 27.16 0.7896
Mask-ShadowGan 20.416 30.555 13.692 23.59 19.65 26.81 0.8222
DC-ShadowNet 25.645 39.087 16.296 21.35 17.31 25.09 0.7834

Fu et al. 16.330 25.435 10.974 25.35 21.05 28.80 0.8405
SG-ShadowNet 16.644 28.176 10.409 25.23 20.13 29.34 0.8412

BMNet 11.303 16.278 9.028 28.35 24.71 30.61 0.8567
SpA-Former 16.052 22.836 13.042 25.22 21.77 27.31 0.8174

ShadowFormer 9.524 13.099 7.764 29.90 26.66 31.98 0.8752
SADC 14.758 24.005 11.104 25.82 21.23 28.59 0.8267

Ours (λ = 1) 11.048 16.066 8.464 28.33 24.56 30.98 0.8616
Ours (λ = 10) 10.831 15.419 8.549 28.48 24.95 30.82 0.8640
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