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1 Demo Page: the “demo.html” file in the folder

We have created a demo page to illustrate our method and showcase our separa-
tion results. We strongly encourage readers to visit this webpage. Please
note that the webpage may not be fully compatible with the Safari browser;
therefore, we recommend using Google Chrome for an optimal viewing experi-
ence. To access the contents of demo, please visit https://wikichao.github.
io/data/projects/DAVIS/.

Fig. 1: Ablation on varying the number
of frames to validate the effect of our pro-
posed temporal transformer.

Fig. 2: Ablation study of the number
of sampling steps with DDIM [5] accel-
eration technique. T : {2, 5, 10, 15, 20,
30, 40}.

2 More Ablations

Aggregated Visual Condition. To study the impact of the visual condition,
we vary the number of sampled frames and compare models with and without the
temporal transformer, as shown in Fig. 1. The results reveal that increasing the
number of frames achieves a more informative visual condition and boosts sep-
aration quality. However, as the number of frames increases, noisy information

https://wikichao.github.io/data/projects/DAVIS/
https://wikichao.github.io/data/projects/DAVIS/
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Table 1: Overview of our constructed VGGSound-Animal10 and VGGSound-
Vehicle10 datasets. Each dataset contains 1000/100 videos for training/testing.

VGGSound-Animal10 VGGSound-Vehicle10

parrot talking tractor digging
dog growling driving snowmobile
cow lowing reversing beeps
cat hissing helicopter
gibbon howling train whistling
wood thrush calling airplane flyby
snake hissing railroad car, train wagon
baltimore oriole calling driving motorcycle
bull bellowing engine accelerating, revving, vroom
snake rattling fire truck siren

may be introduced, leading to a decline in performance. We show that adopt-
ing a temporal transformer effectively alleviates this issue, resulting in better
separation performance.
Analysis on Sampling Step. We analyze the effect of the number of sampling
steps in Fig. 2. We select a set of different T = {2, 5, 10, 15, 20, 30, 40} with
DDIM [5] for sampling acceleration. Our results reveal that a limited number of
steps (e.g., <10) is insufficient for effectively separating the sounds. On the other
hand, the curve tends to converge with a higher number of sampling steps (e.g.,
>15). This suggests that our model is capable of achieving satisfactory separation
results without requiring a large number of inference steps. In practice, we set
T = 15 for our model.

3 More Qualitative Visualizations from Diverse
Categories

To demonstrate the effectiveness of our method in separating sounds across di-
verse categories, we conducted experiments on VGGSound [1]. VGGSound is
a large-scale audio-visual dataset encompassing a wider range of sounds com-
pared to commonly used datasets like AVE [6] and MUSIC [7]. However, since
VGGSound isn’t a standard benchmark for assessing audio-visual separation
performance yet, we thus constructed two smaller datasets focusing on the two
main subcategories within VGGSound: Animals and Vehicles.

We named these two datasets VGGSound-Animal10 and VGGSound-
Vehicle10. For each subcategory, we randomly selected 10 classes and sampled
100 videos for training and 10 videos for testing within each class. This resulted
in a training/testing split of 1000/100 videos for each dataset, exceeding the
scale of the frequently used MUSIC dataset (11 categories, 468/26 videos for
training/testing). Therefore, we believe our custom datasets provide a meaning-
ful evaluation for audio-visual separation tasks, and we leave the exploration
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of constructing a larger, more comprehensive dataset with additional categories
and more comprehensive comparison for future work.

The table in Tab. 1 displays information about the classes in each dataset. We
present qualitative results in Fig. 3 and Fig. 4, which demonstrate that DAVIS
can separate high-quality sounds from diverse categories.
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Fig. 3: Qualitative visualizations on VGGSound-Animal10.

4 Implementation Details

In our experimental setup, we down-sample audio signals at 11kHz. For the
MUSIC dataset, the video frame rate is set to 8 fps. Each video is approxi-
mately 6 seconds and we uniformly select 11 frames per video. The pre-trained
ResNet18 [2] is used as the image encoder. As for the AVE dataset, we set the
video frame rate to 1 fps (following the setup of [6]). We use the entire 10-second
audio as input and use 10 frames to train the model. The pre-trained CLIP im-
age encoder [4] is used. During training, the frames are first resized to 256×256
and then randomly cropped to 224 × 224. We set the total diffusion time step
T = 1000 to train our DAVIS model. During inference, all the frames are directly
resized to the desired size without cropping. To accelerate the separation process,
we use DDIM [5] with a sampling step of 15. The audio waveform is transformed
into a spectrogram with a Hann window of size 1022 and a hop length of 256.
The obtained magnitude spectrogram is subsequently resampled to 256× 256 to
feed into the separation network. We set the number of audio and visual feature
channels C as 512 and empirically choose the scale factor σ = 0.15. Our model
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Fig. 4: Qualitative visualizations on VGGSound-Vehicle10. There is a lot of back-
ground noise in this dataset, which makes it difficult to separate and poses significant
challenges in achieving high-quality results.

is trained with the Adam optimizer, with a learning rate of 10−4. The training
is conducted on two 4090 GPUs for 150 epochs with a batch size of 8.

5 Training and Inference Pseudo Code

The complete training procedure for our DAVIS framework is shown in Algo-
rithm 1. Given the sampled audio-visual pairs from the dataset, we first use
the “mix and separate” strategy to create the mixture, and compute the magni-
tudes x(1), x(2), xmix using STFT. We then apply a logarithmic transformation
to the magnitude spectrogram to convert it to a log-frequency scale. Finally, we
ensure consistent scaling of the log-frequency magnitudes by multiplying by a
scale factor σ and clipping to the range [0, 1].

The visual frames are encoded to embeddings with the pre-trained visual
backbone and aggregated by a trainable temporal transformer followed by an av-
eraging operation. This gives us the visual conditions v(1),v(2). For the training
process, taking video (1) as an example, we sample ϵ from a standard Gaussian
distribution and t from the set {1, ..., T}. Then, we input x(1)

t , xmix,v(1), t to the
Separation U-Net ϵθ and optimize the network. In practice, we use both video
(1) and (2) for optimization.

As illustrated in Algorithm 2, our inference process starts from a sampled
latent variable xT , and takes the mixture xmix and visual condition v to produce
the separated magnitude x0 through T iterations. At each iteration, we adopt
the silence mask-guided sampling strategy to refine the output. In the end, the
output is rescaled to the original range.
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Algorithm 1 Training

1: Input: A dataset D that contains audio-visual pairs {(a(k), v(k))}Kk=1, total
diffusion step T

2: Initialize: randomly initialize Separation U-Net ϵθ and temporal trans-
former ϕ(·), and load the pre-trained visual encoder Encv

3: repeat
4: Sample (a(1), v(1)) and (a(2), v(2)) ∼ D
5: Mix and compute xmix, x(1)

6: Scale x = loge(1 + x) · σ and clip xmix, x(1) to [0,1]
7: Encode visual frames v(1) as v(1) := ϕ(Encv(v

(1)))
8: Sample ϵ ∼ N (0, I), and t ∼ Uniform(1, ..., T )
9: Take gradient step on

10: ∇θ||ϵ− ϵθ(x
(1)
t , xmix,v(1), t)||, x(1)

t =
√
ᾱtx

(1) +
√
1− ᾱtϵ

11: until converged

Algorithm 2 Inference

1: Input: Audio mixture amix and the query visual frame v, total diffusion
step T

2: Sample xT ∼ N (0, I)
3: Compute xmix := STFT(amix)
4: Encode visual frames v as v(1) := ϕ(Encv(v))
5: for t = T, ..., 1 do
6: Sample z ∼ N (0, I) if t > 1, else z = 0

7: Compute xt−1: xt−1 = 1√
αt
(xt − 1−αt√

1−ᾱt
ϵθ(xt, x

mix,v, t)) +

√
β̃tz

8: xt−1 = silence_mask_guided_sampling(xt−1)
9: end for

10: return ex0/σ − 1

6 Ablation on L1 Training Loss

Tab. 2 shows that an L1 loss in training the diffusion model performs better
than an L2 loss for audio-visual separation on both MUSIC and AVE datasets.
It’s because of the presence of silent time frames in magnitude spectrograms,
where the values are almost zero. This skewed data distribution renders the
conventional L2 loss in diffusion models susceptible to error.

7 Limitation

Visual Embeddings. Our proposed DAVIS framework incorporates the ex-
traction of global visual embedding as a condition for visually-guided source
separation. This technique, which utilizes global visual features, has been widely
adopted in audio-visual learning [3, 7]. Unlike methods that rely on pre-trained
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Table 2: Ablation for the choice of loss function on the MUSIC and AVE datasets.

MUSIC [7] AVE [6]

loss function SDR↑ SIR↑ SAR↑ SDR↑ SIR↑ SAR↑
L2 10.84 17.52 14.55 4.53 8.26 10.14
L1 11.61 18.36 14.77 4.86 9.13 9.92

object detectors for extracting visual features, our framework does not have such
a dependency. However, it may encounter limitations when trained on uncon-
strained video datasets. Intuitively, successful results can be achieved when the
video contains a distinct sounding object, such as solo videos in the MUSIC
dataset or videos capturing a sounding object performing a specific event in the
AVE dataset. Nonetheless, this training assumption may not hold in more chal-
lenging scenarios, where multiple objects are likely producing sounds, rendering
the global visual embedding inadequate for accurately describing the content of
sounding objects. To address this issue, one possible approach is to adapt our
framework to leverage more fine-grained visual features and jointly learn sound-
ing object localization and visually-guided sound separation. This adaptation
enables the model to utilize localized sounding object information to enhance
the audio-visual association.
Evaluation Metrics. We observe from the examples on the AVE and VG-
GSound datasets that many video clips contain off-screen sound or background
noise, rendering the notion of ground truth unsuitable for evaluation. Conse-
quently, comparing separation results with the ground truth audio clip and re-
porting SDR/SIR/SAR values may be insufficient to assess the method’s effec-
tiveness. Therefore, a new metric is needed to evaluate sound separation quality
in more noisy or challenging scenarios. One possible metric is to leverage pre-
trained audio-text models and perform zero-shot classification or measure the
cosine similarity between separated audio and the text label (analogous to zero-
shot scenarios using the CLIP model).

8 Future Work

Our approach initiates the utilization of generative models for audio-visual scene
understanding, paving the way for potential extensions to other multi-modal
perception tasks like audio-visual object localization. Humans demonstrate the
ability to imagine a “dog” upon hearing a “barking” sound, highlighting the po-
tential of cross-modal generation in advancing audio-visual association learning.
This implies that localization and separation tasks can be integrated into a
single generative framework. In the future, we plan to explore the application
of generative models to jointly address audio-visual localization and separation
tasks.
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More Types of Conditions. We have investigated the use of visual frame
features and text prompts as conditions for sound separation in our work. These
conditions are effective for separating sounds from different categories. However,
for a more challenging scenario such as separating sounds from the same category,
we need a different type of condition that provides discriminative cues to guide
separation. Examples of such conditions are optical flow and trajectory. In our
future work, we plan to incorporate more conditions in our framework.
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