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1 Theoretical Motivation

To motivate our fine-tuning setting mathematically, we consider the domain shift
from DS to DT as a bijective map DS 3 x 7! �(x) 2 DT . Note that learning such
maps is a common computer vision task [119]. Let DS [ DT 3 x 7! T (x) 2 T
be the map which provides the text description to the image x. We assume
that, with high probability, the text description does not refer to the domain
and thus remains valid in the new domain. E.g., if a scene in sunshine x is
transferred to the rainy domain by �(x), the text description only changes if
there is an explicit mention of weather in either of the scenes, which is assumed
to be rare. Mathematically, this is expressed as T (x) = T (�(x)) for x 2 DS

with probability p � (1� p) � 0. Furthermore, we assume perfect image-to-text
feature alignment, i.e. MV

E
(x) = ML

E
(T (x)) for x 2 DS [DT . Then we have:

Lemma 1. Under the above assumptions, the encoder-decoder network M =
MV

D
�MV

E
is domain robust, i.e. provides the same output to x and �(x), with

probability not smaller than p.

Proof. With probability not less than p, we have for x 2 DS

MV

E
(�(x)) = ML

E
(T (�(x))) = ML

E
(T (x)) = MV

E
(x).

Application of MV

D
to both sides completes the proof.

Let us remark that the task of the decoder network MV

D
plays no role in

the proof of Lemma 1 which is equally valid for semantic segmentation, object
detection or other downstream tasks. The mechanics of this lemma is simply
based by an alignment of the invariances of the network in the sense of [24, 78]
with the direction of the domain shift via feature alignment with an auxiliary
modality (language, in our case) with invariance under the given shift already at
the level of the data itself. Our practical implementation of this idealized descrip-
tion builds upon large-scale vision-language pre-trainings as done by CLIP [73],
or EVA-CLIP [27] with image-to-text feature alignment as a training objective.
These produce highly generalized encoder representations for MV

E
. We utilize

this pre-trained vision encoder in a simple, transfer learning-only setting for our
investigations. In the following, we will introduce the details.

2 ResNet-101 & Synthia Experiments

In Tab. 8, the domain generalization performance of our VLTSeg approach is
shown with a ResNet-101 backbone. When training on GTA5, we perform com-
petitively with previous SOTA in the DG mean, demonstrating the effectiveness
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of fine-tuning for convolutional neural networks. It has to be considered that
the EVA-02 [90] pre-trained initialization was not available for the ResNet-101
backbone, so the CLIP [73] initialization was used. Moreover, it is important
to note that some recent approaches, like DIDEX [65] or CLOUDS [3], rely on
other foundation models like stable diffusion for data generation/augmentation
or label refinement by SAM [53]. That creates a significant advantage during
training compared to approaches that do not incorporate other foundation mod-
els.
We also performed experiments on the Synthia [79] dataset to verify the effec-
tiveness on another synthetic dataset. As shown in Tab. 9 VLTSeg outperforms
most of the state-of-the-art approaches and shows only a slightly lower general-
ization compared to DIDEX [65] which uses additional generated data from a
stable diffusion model.
Table 8: Domain generalization performance in comparison with state-of-the-art
approaches. Training was performed on the synthetic GTA5 (DS=DGTA5

train ) dataset. All
our experiments employed a CLIP [73] pre-trained ResNet-101 [36] backbone (therefore
denoted as VLTSeg-R) with a Mask2Former [15] head. Prior work results are cited from
the respective paper, only the values for works marked with � are taken from [69].

DG Method mIoU (%) on
DCS

val DBDD
val DMV

val
DG

mean

D
S
:
G

T
A

5

Baseline [105] 36.1 36.6 43.8 38.8
IBN-Net� [67] 37.7 36.7 36.8 37.1
RobustNet� [16] 37.3 38.7 38.1 38.0
DRPC [111] 42.5 38.7 38.1 39.8
SW [68] 36.1 36.6 32.6 35.1
FSDR [44] 44.8 41.2 43.4 43.1
SAN+SAW [69] 45.3 41.2 40.8 42.4
WEDGE [50] 45.2 41.1 48.1 44.8
GTR [70] 43.7 39.6 39.1 40.8
SHADE [116] 46.7 43.7 45.5 45.3
WildNet� [56] 45.8 41.7 47.1 44.9
TLDR [51] 47.6 44.9 48.8 47.1
RICA [89] 48.0 45.2 46.3 46.5
PASTA [9] 45.3 42.3 48.6 45.4
FAMix [25] 49.5 46.4 52.0 49.3
CLOUDS [3] 55.7 49.3 59.0 54.7
DIDEX [65] 52.4 40.9 49.2 47.5
DGinStyle [48] 46.9 42.8 50.2 46.6
VLTSeg-R (Ours) 49.5 40.0 52.4 47.3
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Table 9: Domain generalization performance in comparison with state-of-the-art
approaches. Training was performed on the synthetic SYNTHIA and UrbanSyn dataset
dataset. Prior work results are cited from the respective paper.

DG Method mIoU (%) on
DCS

val DBDD
val DMV

val
DG

mean

D
S
:
S
Y

N
T

H
I
A

Baseline [105] 41.4 36.2 42.4 40.0
ReVT [92] 46.3 40.3 44.8 43.8

CMFormer [4] 44.6 33.4 43.3 40.4
PromptFormer [32] 49.3 - - -

IBAFormer [88] 50.9 44.7 50.6 48.7
CLOUDS [3] 53.4 47.0 55.8 52.1
DIDEX [65] 59.8 47.4 59.5 55.6

VLTSeg 56.8 51.9 55.1 54.6

D
S
:
U

S Baseline [105] 63.3 41.3 58.8 54.5
VLTSeg 70.1 52.4 63.0 61.8

3 Decoder Architecture

We also examine the impact of different decoder architectures on the domain
generalization performance, as shown in Tab. 10. The DG mean of the model with
the Mask2Former [15] decoder is 4.1% higher than the model a Semantic FPN
head and also 1.5% better than the ASPP-based decoder from DAFormer [40].
VLTSeg with a Mask2Former [15] decoder performs consistently better across all
four real-world datasets than the other decoder architectures. That implies that
Mask2Former can leverage the provided visual embeddings from vision-language
pre-training more effectively and better focus on domain-invariant features.
Table 10: Ablation study of different
decoder architectures and their do-
main generalization performance (mIoU
(%)). Training was performed on the syn-
thetic GTA5 (DS=DGTA5

train ) dataset. Eval-
uation is performed on the four shown
real-world datasets.

Decoder mIoU in %

DCS
val D

BDD
val DMV

val DACDC
val

DG
mean

Semantic FPN [61] 60.5 57.5 62.2 55.9 59.0

Segformer [105] 58.2 55.0 61.4 56.0 57.7

DAFormer [40] 64.0 57.9 65.0 59.3 61.6

Mask2Former [15] 65.3 58.3 66.0 62.6 63.1

Table 11: Computational complex-
ity of the vision encoders that were
employed in our experiments. GFLOPS
and Parameters are computed using
MMPreTrain [17], numbers are rounded to
integers.

Encoder Parameters GFLOPS

ViT-B-16 87 88
ViT-L-16 304 311
SAM-L-16 308 397

EVA-02-S-16 22 32
EVA-02-B-16 86 107
EVA-02-L-14 303 508

4 Sensitivity Analysis of the Training Configuration

In the analysis with EVA-02-B-CLIP we observe that a change of the learning
rate and the optimizer affect the results significantly. Changing the optimizer to
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SGD or Adam leads to a collapsed training most likely because of the randomly
initialized Mask2Former decoder. While a different batch size does not affect
results, as expected, a higher learning rate diminishes DG performance more
than a lower one.

Batch Size Learning Rate Optimizer
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5 Qualitative Results

Cityscapes We show predictions on the Cityscapes test set DCS
test in Fig. 4

which visualizes the state-of-the-art segmentation quality of our VLTSeg ap-
proach when training supervised on Cityscapes.

Fig. 4: Predictions on Cityscapes test set DCS
test. Training and evaluation was

conducted as described in Sec. 6.2

ACDC We show predictions on the ACDC val set DACDC
val in Fig. 5. Even though

our model has neven seen this domain before during training we can observe that
it provides high-quality segmentation maps across challenging adverse weather
conditions.

6 Implementation Details

6.1 Training settings

We provide an extensive list of our hyperparameters and detailed settings in
Tab. 12 to make our experiments reproducible. For the Mask2Former [15] de-
coder we used the default settings as provided by the authors. For the EVA-02-S-16
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RGB Input VLTSeg Prediction VLTDet Prediction

Fig. 5: Predictions on the ACDC val set DACDC
val . Training on DCS

train and evaluation
was conducted as described in Sec. 6.2. Best viewed digital for the predictions.
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model we interpolated the text encoder output projection in bilinear mode to
match the vision encoder output shape of 384. Similar to DenseCLIP [74] we
used FPN projection layers between Encoder and Decoder.

Table 12: Detailed Experimental Settings

Hyperparameter Synthetic-to-Real Real-to-Real
crop size 512 1024
stride size 426 768
iterations 5k 20k
batch size 16 8

Optimizer

type AdamW
default lr 1e-04

backbone lr 1e-05
weight_decay 0.05

eps 1e-08
betas (0.9, 0.999)

LR Schedule

type PolyLR
eta_min 0
power 0.9
begin 500

Text

context length 13
embedding size 768

transformer heads 12
transformer width 768
transformer layers 12

Encoder

in_channels 3
patch size 14

embedding size 1024
depth 24
indices [9, 14, 19, 23]

output_dim 768

Decoder

in_channels [1024,1024,1024,1024]
stride [4, 8, 16, 32]

feat_channels 256
out_channels 256
num_classes 19
num_queries 100

num_transformer_feat_level 3
positional_encoding 128

6.2 Test set evaluation

For the evaluation on the Cityscapes [20] and ACDC [81] test set we followed
the corresponding common practice.
For Cityscapes test set evaluation, we first trained VLTSeg on Mapillary for
20k iterations as also done by previous state-of-the-art approaches [6, 7, 99].
Afterwards, 40k fine-tuning iterations on the official DCS

train dataset with 2975
images were conducted. In contrast to the other works, no additional data like
the coarse annotations were used. Both trainings used 1024 ⇥ 1024 resolution.
We used multi-scale evaluation with [1.0, 1.25, 1.5, 1.75, 2.0, 2.25] image ratios
and random flip as test-time augmentation during inference. Test set evaluation
was done on the full 2048⇥ 1024 resolution.For the ACDC test set evaluation,
we trained for 20k iterations on 1024 ⇥ 1024 crops only on Cityscapes DCS

train

without using any ACDC data. The test set inference was similar to Cityscapes
with a multi-scale evaluation with [1.0, 1.25, 1.5, 1.75] image ratios and on the
full 1920 ⇥ 1080 resolution.
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7 Computational complexity of vision encoders

We show the GFLOPS and parameters of the vision encoders employed in our
experiments in Tab. 11. We used three variants of the ViT with base, large, and
SAM and a patch size of 16. Moreover, we employed three complexities of EVA:
small, base, and large. Due to the architectural modifications, EVA has more
GFLOPS than ViT at a similar number of parameters.

8 Feature Space Analysis

We conducted a feature space analysis for the other real-world datasets for
Cityscapes [19] before and after fine-tuning on the synthetic GTA5 [75] dataset.
The results are shown in Fig. 6.
We observe that real-world embeddings are well divided for the real-world target
dataset after the synthetic source-only training. That implies that fine-tuning
improves the feature space of vision-text alignment by separating classes more
clearly and offering strong generalization capabilities across several different real-
world domains.

Fig. 6: t-SNE feature space analysis on the real-world dataset Cityscapes.
We sampled 500 images from the real-world validation set and extracted the visual
embeddings of our best performing VLTSeg network. From the plot, we can see that
real target class clusters are well separated (right image) after our VLTSeg training on
source synthetic GTA5 dataset. Best viewed digitally.
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