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1 Procedure of system pose noise addition

In this section, we explain the detailed procedure of system pose noise addition.
Assume we have ground-truth system rotation rgti and translation tgti , which
convert the camera coordinate system into the world coordinate system (i.e.,
tgti are the true camera positions in world coordinate system). To determine the
scale of the scene, we compute baseline T , as follows:

T =
1

N − 1

N−1∑
i=0

∣∣tgti − tgti−1

∣∣
2
, (1)

where N is the number of the images. Once rotational noise scale δr and trans-
lational noise scale δt are specified, we compute initial system rotation riniti and
translation tiniti as follows:

r = U(−δr/2,+δr/2),

p = U(−δr/2,+δr/2),

y = U(−δr/2,+δr/2),

rnoisei = euler(r, p, y),

riniti = SO3(so3(rnoisei ) · so3(tgti )),

x = U(−δt/2,+δt/2) · T,
y = U(−δt/2,+δt/2) · T,
z = U(−δt/2,+δt/2) · T,

tiniti = tgti + (x, y, z)T ,

(2)

where euler makes rotation vector from roll, pitch, yaw, so3 makes rotation
matrix from rotation vector, SO3 makes rotation vector from rotation matrix,
and U(a, b) is uniform noise with range of a to b.

2 Evaluation metrics

As mentioned in the main text, we used Chamfer distance (reconstructed shape
to GT shape) to measure the accuracy of the reconstructed shapes. However, we
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noticed too large values were obtained from the reconstructed shapes with many
outliers, such as Light-sectioning. Thus, we added the following pre-processes
before computing Chamfer distance for fair comparison.

1. Adjust rotation, translation and scale of the estimated poses to fit the GT
poses to remove ambiguity on global transformation.

2. Compute the point-to-point distances between the reconstructed shapes and
the GT shapes, and remove points with minimum distance larger than 5%
of the scene boundary as outliers.

3 Evaluation on various pose noise scales

In this section, we show the results of additional experiments on various range
of pose noise scales in Table 1 and Table 2. Specifically, we tried 10◦, 20◦ for
rotation, and 50%, 100% for translation.

As the results show, the proposed method consistently outperforms the com-
parative methods. Light-sectioning sometimes surpasses the proposed method
for larger pose noises, which is because the NeRF-based methods tend to fail to
converge when the scale of noise is large, which is a limitation of NeRF-based
localization.

Interestingly, reconstruction accuracy is higher in no illumination with larger
pose noises, despite lack of textural information. We consider it is because textu-
ral information is beneficial only when there is enough overlap between frames,
otherwise, it produces local optima. On the other hand, the projected laser main-
tains a nearly constant color in the image, almost always intersecting with the
other lasers in adjacent frames at some point. This indicates new advantage of
the proposed method.

4 Comparison to traditional SfM, state-of-the-art Neural
SDF, and 3DGS

We conducted an additional experiment using COLMAP (SfM and MVS), Neu-
ralangelo [17] (state-of-the-art Neural SDF) and 3DGS [14] on Lego (NeRF-
Synthetic), Stone (BlendedMVS), and Real (controlled sequence) scenes. The
results still show ours is advantageous in no illumination scenes, but the com-
parative methods achieved remarkable accuracy in normal illumination scenes.
As for 3DGS, since it is highly sensitive to initialization, it did not converge in
Stone scene (Table 3).

5 Pattern sparsity and scene scale

We conducted an additional experiment for more thorough analysis. We changed
the number of lasers and applied the proposed method to Lego and Stone scenes.
The results show the proposed method works consistently regardless of the spar-
sity (Table 4).
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Table 1: Chamfer distances [mm] of the reconstructed shapes. Ours consistently out-
performs the comparative methods. "N/A" indicates no shape reconstructed. Legend:
Best, Second best.

Illum Rot[◦] Trans[%] Method NeRF-Synthetic BlendedMVS
Lego Chair Hotdog Mic Stone Dog Bear Sculpture

Normal

10 50

Light-sectioning 39.88 40.56 43.72 39.90 96.97 25.31 81.32 20.80
NeuS+Pose estim. 13.73 50.97 29.10 N/A 59.51 28.04 23.17 28.57

NeuS+SL 42.59 46.98 48.36 35.13 85.06 29.80 46.00 27.64
ActiveSfM (Ours) 13.07 36.93 22.42 12.13 31.84 19.89 23.40 10.75

10 100

Light-sectioning 40.50 37.90 49.99 40.47 103.44 25.46 92.35 19.63
NeuS+Pose estim. 32.6 N/A 48.6 N/A 76.62 44.99 27.38 8.71

NeuS+SL 41.47 49.33 51.36 50.34 90.85 40.74 55.49 39.04
ActiveSfM (Ours) 25.10 32.59 44.64 33.66 40.12 26.05 30.85 11.18

20 50

Light-sectioning 42.30 42.80 50.00 43.93 93.45 30.40 81.27 24.61
NeuS+Pose estim. 32.6 N/A 48.60 N/A 76.62 44.99 27.38 8.71

NeuS+SL 41.54 53.98 48.15 36.43 106.52 35.21 N/A 45.85
ActiveSfM (Ours) 41.41 39.35 45.73 40.60 41.02 28.16 23.63 10.35

20 100

Light-sectioning 41.99 44.81 48.77 44.39 100.23 26.29 79.68 28.93
NeuS+Pose estim. N/A N/A 28.84 N/A N/A 39.64 N/A N/A

NeuS+SL 40.96 54.74 55.8 4.15 97.41 41.12 61.98 40.01
ActiveSfM (Ours) 38.76 42.63 46.12 48.78 39.46 38.91 24.20 N/A

No

10 50

Light-sectioning 39.88 40.56 43.72 39.90 96.97 25.31 81.32 20.80
NeuS+Pose estim. 59.75 48.45 61.15 43.94 N/A 29.31 81.40 32.26

NeuS+SL 35.04 44.76 52.76 N/A N/A 50.64 N/A N/A
ActiveSfM (Ours) 18.50 18.60 28.47 6.37 35.36 21.67 22.99 11.20

10 100

Light-sectioning 40.05 37.90 49.99 40.47 103.44 25.46 92.35 19.63
NeuS+Pose estim. 62.87 52.60 45.24 36.50 112.05 30.29 N/A N/A

NeuS+SL 35.04 44.76 52.76 N/A N/A 50.64 N/A N/A
ActiveSfM (Ours) 31.26 40.19 44.99 45.28 36.10 28.57 22.50 10.68

20 50

Light-sectioning 42.30 42.80 50.00 43.93 93.45 30.40 81.27 24.61
NeuS+Pose estim. 32.74 48.71 N/A 37.67 N/A 49.41 85.97 27.52

NeuS+SL 28.16 51.67 N/A N/A N/A 43.90 112.48 N/A
ActiveSfM (Ours) 18.45 17.64 28.07 32.84 36.21 32.83 26.33 10.10

20 100

Light-sectioning 41.99 44.81 48.77 44.39 100.23 26.29 79.68 28.93
NeuS+Pose estim. 31.70 54.47 56.56 22.69 110.47 48.86 60.32 N/A

NeuS+SL 30.19 48.67 N/A N/A N/A 48.58 90.25 N/A
ActiveSfM (Ours) 41.64 34.28 47.81 44.06 38.49 35.62 26.30 9.77

6 Evaluation on projector pose refinement

We also conducted another evaluation on projector pose refinement. We empir-
ically observed that large projector pose error leads to severe collapse of the
reconstructed shapes, but small errors can be refined by defining the projector
poses as learnable parameters. Therefore, we added 0, 1, 4◦ rotational noise and
5, 10% translational noise on the projector poses in addition to the camera poses
with 10◦ rotational noise and 50% translational noise. Note that since we assume
projectors are fixed relative to the camera, we have only 6 parameters to refine
per projector. To verify the effectiveness of the proposed method, we also trained
the pipeline without projector pose refinement.

Figure 1 and Table 5 shows the qualitative and quantitative results of the
evaluation. As the results show, reconstruction and pose estimation quality are
consistently improved by projector pose refinement. We noticed the projector
pose estimation accuracy is considerably bad despite the drastic improvements in
the reconstruction quality. This is presumed to be because the pattern projected
by the projectors was a cross-laser pattern, which left degrees of freedom in the
pose of the projector, especially in the no illumination where textural information
is not available. It is rather interesting the training was performed to maintain
the consistency of the scene and the reconstruction results were accurate, even
in such an under-constrained problem.
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Table 2: Mean L1 errors of the estimated poses (rotation and translation). "N/A"
indicates no shape reconstructed. Legend: Best.

Illum Rot[◦] Trans[%] Metric Method NeRF-Synthetic BlendedMVS
Lego Chair Hotdog Mic Stone Dog Bear Sculpture

Normal

10 50
Rot[◦] NeuS+Pose estim. 0.84 3.90 1.50 N/A 0.60 3.02 0.96 2.40

ActiveSfM (Ours) 0.56 1.18 1.29 0.88 0.52 0.76 0.38 0.67

Trans[%] NeuS+Pose estim. 4.25 25.63 9.61 N/A 1.37 7.83 1.53 4.44
ActiveSfM (Ours) 1.43 7.29 5.59 3.38 0.09 0.62 0.43 0.56

10 100
Rot[◦] NeuS+Pose estim. 3.82 N/A 3.67 N/A 3.74 4.64 0.85 2.15

ActiveSfM (Ours) 1.95 1.38 4.04 3.80 0.79 3.91 3.98 0.71

Trans[%] NeuS+Pose estim. 28.98 N/A 41.24 N/A 7.65 52.78 4.25 3.64
ActiveSfM (Ours) 14.30 8.13 44.62 46.59 0.08 8.16 5.07 0.70

20 50
Rot[◦] NeuS+Pose estim. 7.07 N/A 6.08 N/A 4.07 6.83 N/A 8.66

ActiveSfM (Ours) 4.91 4.87 5.37 7.07 1.03 3.95 0.42 1.07

Trans[%] NeuS+Pose estim. 25.16 N/A 36.99 N/A 4.40 55.78 N/A 15.25
ActiveSfM (Ours) 25.36 25.20 25.14 25.11 0.09 4.86 0.39 1.02

20 100
Rot[◦] NeuS+Pose estim. N/A N/A 7.42 N/A N/A 7.87 N/A N/A

ActiveSfM (Ours) 6.27 7.05 6.01 6.78 1.26 7.93 1.71 N/A

Trans[%] NeuS+Pose estim. N/A N/A 49.1 N/A N/A 20.31 N/A N/A
ActiveSfM (Ours) 41.2 43.89 43.37 48.79 0.07 13.72 2.07 N/A

No

10 50
Rot[◦] NeuS+Pose estim. 6.79 7.18 7.86 7.46 N/A 7.99 7.57 5.80

ActiveSfM (Ours) 0.74 1.07 1.02 0.63 0.53 1.01 0.42 0.90

Trans[%] NeuS+Pose estim. 25.80 23.86 25.20 25.95 N/A 10.71 8.60 17.77
ActiveSfM (Ours) 1.48 3.70 2.97 2.32 0.41 1.78 0.48 0.71

10 100
Rot[◦] NeuS+Pose estim. 7.68 8.88 3.22 4.98 3.58 8.99 N/A N/A

ActiveSfM (Ours) 1.19 1.24 1.82 1.85 0.65 3.08 0.48 1.18

Trans[%] NeuS+Pose estim. 47.16 47.26 68.04 37.25 12.79 12.11 N/A N/A
ActiveSfM (Ours) 1.82 4.53 6.31 16.18 0.44 8.04 0.50 0.79

20 50
Rot[◦] NeuS+Pose estim. 0.51 8.65 N/A 9.14 N/A 10.09 10.16 3.58

ActiveSfM (Ours) 1.05 1.02 1.36 3.39 0.65 7.11 0.55 1.28

Trans[%] NeuS+Pose estim. 20.4 25.76 N/A 26.22 N/A 10.82 8.80 7.03
ActiveSfM (Ours) 3.38 3.59 4.17 26.43 0.40 10.60 0.59 1.25

20 100
Rot[◦] NeuS+Pose estim. 4.31 9.64 9.45 7.63 11.06 9.99 3.67 N/A

ActiveSfM (Ours) 2.49 2.02 5.36 7.20 0.69 8.52 0.97 1.69

Trans[%] NeuS+Pose estim. 24.35 49.26 45.24 52.39 28.18 12.51 6.56 N/A
ActiveSfM (Ours) 1.43 7.42 39.41 56.34 0.43 14.02 0.80 1.81

7 Evaluation without mask loss

During the experiments, we used mask loss to separate NeRF-Synthetic, Blend-
edMVS, and controlled sequence scenes. However, some may wonder if object
mask is not available in dark environments, and in that case, using mask loss
does not make sense. Therefore, we conducted another experiment to clarify how
the proposed method works in the dark environment without mask loss. Specif-
ically, we ran evaluations on shape reconstruction accuracy and pose estimation
accuracy on NeRF-Synthetic and BlendedMVS as same as the main text, but
without mask loss. Figure 2 shows the qualitative results and Table 6 shows the
quantitative results. From the results, we can say it is possible to run ActiveSfM
without mask loss, but its accuracy is suboptimal compared to that with mask
loss, and enhancing the robustness is the future work.

8 Details of the experimental system configuration

In Table 7, we briefly explain the details of the experimental system configuration
used in section 5. As for the devices, we used a Basler camera and commercial
cross laser projectors.
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Pose Method Normal illum. No illum.
noise Lego Stone Real Lego Stone Real

No

COLMAP 6.19 12.04 7.12 N/A N/A N/A
Light-sectioning 21.08 17.40 13.33 21.08 17.40 13.33

NeRF 23.04 44.31 18.28 24.75 63.99 19.44
3DGS 5.50 132.85 21.66 N/A N/A N/A

Neuralangelo 16.85 26.15 12.59 N/A N/A N/A
Ours 11.62 30.92 9.55 14.97 35.35 9.39

Yes

COLMAP 6.19 12.04 7.12 N/A N/A N/A
Light-sectioning 39.88 96.97 23.45 39.88 96.97 23.45

NeRF 56.65 115.54 25.73 59.16 121.60 26.18
3DGS 19.65 105.73 23.40 N/A N/A N/A

Neuralangelo 48.90 100.18 30.56 N/A N/A N/A
Ours 13.07 31.84 9.27 18.50 35.36 12.29

Table 3: Comparison results of traditional SfM, SL, NeRF, 3DGS, Neuralangelo.
"N/A" indicates no shape reconstructed.

Method Normal illum. No illum.
Lego Stone Lego Stone

NeuS + Pose estim. 13.73 59.51 59.75 N/A
Ours (2 lasers) 12.96 30.63 16.91 38.70
Ours (4 lasers) 13.07 31.84 18.50 35.36
Ours (6 lasers) 12.84 31.68 17.39 23.61

Table 4: Results of pattern sparsity analysis. "N/A" indicates no shape reconstructed.

9 Procedure of synthetic image generation

Here, we explain the procedure of the synthetic image generation used in subsec-
tion 5.2. Assume we have the original images J(p) and GT depth images D(p).
For each 2D point p, we back-project it to the world coordinate system to obtain
3D point Ps as follows,

Ps = Ri ·K−1
c pTD(p) + ti, (3)

then, re-project it to the k-th projector screen coordinate system to obtain the
projected color onto the point Ps,

Qk(Ps) = Ik(Kk(RkPs + tk)T ), (4)

finally, pixel color of the synthesized image J ′ on p is computed as follows,

J ′(p) = J(p) +

Np∑
k=1

o(Ps, k)(i
GT
r J(p) + iGT

b )Qk(Ps), (5)

where iGT
r and iGT

b are GT illumination parameters, and o(Ps, k) returns 1 if Ps

is not occluded by other points when viewed from the k-th projector, otherwise
returns 0. Occlusion is computed using Z-buffer in our implementation.
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Table 5: Quantitative results of evaluation on projector pose refinement. Numbers in
parenthesis are the results without projector pose refinement. “failed” indicates they
did not produce any mesh.

Illum Proj noise Camera Projector ShapeRot [◦] Trans [%] Rot [◦] Trans [%] Rot [◦] Trans [%]

Normal

0◦ 5%
0.33 2.48 3.16 5.28 5.19
(0.43) (7.59) (-) (-) (12.73)

0◦ 10%
0.34 2.07 1.66 44.40 5.09
(0.55) (4.06) (-) (-) (11.02)

2◦ 5%
0.31 1.87 7.22 6.66 5.48
(0.47) (3.04) (-) (-) (5.70)

2◦ 10%
0.33 1.93 4.34 10.02 5.32
(0.45) (3.05) (-) (-) (5.50)

4◦ 5%
0.29 2.10 7.52 6.46 5.18
(0.97) (6.58) (-) (-) (7.83)

4◦ 10%
0.38 3.23 11.88 10.13 5.73
(0.70) (8.17) (-) (-) (7.07)

No

0◦ 5%
0.41 17.43 0.41 5.40 14.78
(0.44) (25.80) (-) (-) (18.62)

0◦ 10%
0.44 14.05 0.60 9.79 11.18
(0.52) (32.11) (-) (-) (19.19)

2◦ 5%
0.51 11.50 4.83 6.80 9.39
(5.84) (42.12) (-) (-) (failed)

2◦ 10%
0.42 9.98 0.10 49.11 9.07
(5.83) (39.61) (-) (-) (failed)

4◦ 5%
0.54 9.24 2.96 6.69 15.34
(0.65) (11.18) (-) (-) (17.20)

4◦ 10%
0.43 7.53 2.69 10.40 12.44
(0.67) (9.71) (-) (-) (17.48)
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Fig. 1: Qualitative results of projector pose refinement on rotational noise 4◦ and trans-
lational noise 10% case. Left to Right: Camera poses, projector poses, reconstructed
shapes.
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Fig. 2: Qualitative comparison with and without mask loss.
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Method NeRF-Synthetic BlendedMVS
Lego Chair Hotdog Mic Stone Dog Bear Sculpture

ActiveSfM (w mask loss) 18.50 18.60 28.47 6.37 35.36 21.67 22.99 11.20
ActiveSfM (w/o mask loss) 25.47 14.58 25.46 9.10 31.88 10.40 N/A 12.39

Table 6: Quantitative comparison in Chamfer distance (mm) with and without mask
loss. N/A indicates no shape reconstructed.

Image resolution
800x800 (NeRF-Synthetic)
768x586 (BlendedMVS)

1280x960 (Real)
Laser wavelength 520± 10nm
Line thickness 3mm at 1m away

Table 7: Details of the experimental system configuration.

10 Procedure of dark image synthesis

As for the dark image synthesis used in subsection 5.3, we simply scaled the
intensities of the images to simulate quantization error in 8-bit image format.
Other types of noise are the future work, like high ISO noise or motion blur.

11 On GNSS & IMU accuracy

Some people may have a doubt if GNSS or IMU accuracy is really insufficient for
3D measurement. The accuracy of common GPS is said to be 1-3 meters, and
that of common IMU is said to be 2-5 centimeters and 0.005-0.015 degrees, which
are covered in the experiments. This may be acceptable for large scale capturing,
while it may be impossible to recover a meaningful trajectory in micro-baseline
settings. Our structured light system is intended for the latter use-cases, such as
underwater facility inspection or endoscopic surgery.

12 Implementation details of comparative methods

In general, we used official implementations for the comparative methods in the
experiments. However, we had to modify a little bit to acquire the results, which
is described below.

Light-sectioning Light-sectioning is a general principle for 3D shape reconstruc-
tion with active projection, and there are no specific implementation. Therefore,
we implemented light-sectioning by ourselves from scratch.

LLNeRF [34] Since the official implementation does not provide a feature for
mesh reconstruction, we implemented mesh reconstruction feature by marching
cubes with the obtained density values from MLP. As for the hypermarameter,
we does not change them except near / far clip and data loss function. Because
the original rawnerf loss function did not converge well with our data, we replaced
it with Mean-Squared-Error (mse).
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NeuS [35] We used the official implementation with few modifications. Specifi-
cally, we increased resolution for mesh reconstruction to obtain finer results and
re-implemented camera parameters as learnable parameters for NeuS+Pose es-
timation. Note, NeuS does not update camera parameters by itself (no gradients
are computed).

NeuS+Pose estimation We added the pose estimation pipeline identical to ours
on NeuS. We can also say it is SDF-based NeRF– [37].

NeuS+SL NeuS+SL is identical to the proposed method without pose estima-
tion, as mentioned in the main text.


