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Loss Calculation (Linked with TriFuse part of Section 3.2). Our primary
objective function Ldiff needs to be optimized by our TriFuse model, and the
training process includes additional loss functions to enhance detail preservation
and overall content accuracy of the restored images. These loss functions include
a noise loss Lnoise, a frequency loss Lfrequency, and a photo loss Lphoto.

The noise loss Lnoise is formulated to minimize the difference between the
predicted noise and the actual noise:

Lnoise = LMSE(ϵpred, ϵ), (1)

where ϵpred is the predicted noise and ϵ is the actual noise.

The frequency loss Lfrequency is designed to preserve high-frequency details
and is a combination of MSE loss and Total Variation (TV) loss [2]:

Lfrequency = 0.1 (LMSE(Ihigh0, Igt high0) + LMSE(Ihigh1, Igt high1)

+ LMSE(Ipred LL, Igt LL)) + 0.01 (TV(Ihigh0) + TV(Ihigh1) + TV(Ipred LL)) ,

(2)

where Ihigh0, Ihigh1, and Ipred LL are the predicted high-frequency components
and Igt high0, Igt high1, and Igt LL are the ground truth high-frequency compo-
nents. The TV loss helps in reducing noise while preserving edges.

The photo loss Lphoto combines L1 loss and SSIM loss [5] to maintain the
content fidelity of the restored image as follows:

Lphoto = |Ipred − Igt|1 + (1− SSIM(Ipred, Igt)), (3)
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Table 1: Detected objects across different subsets of our LoLI-Street dataset
using YOLOv10 [4], illustrating the challenges in accurately detecting objects
under low-light conditions. The number of detected objects decreases in low-light
subsets, whereas in high-light subsets, more objects are detected.

Class Class High Low Real Low-Light
ID Name Train Validation Train Validation Testset

0 Person 53412 3957 44409 3082 1062
1 Bicycle 1671 108 1271 80 61
2 Car 171837 15744 133697 12067 4918
3 Motorcycle 2103 2400 1279 1578 45
4 Airplane 138 9 91 4 2
5 Bus 6255 852 4231 459 100
7 Truck 17976 2043 11930 1150 343
9 Traffic Light 41391 1176 32226 666 1890
10 Fire Hydrant 411 24 244 13 6
11 Stop Sign 549 66 394 24 3
12 Parking Meter 21 10 12 6 2
13 Bench 321 12 250 5 8
16 Dog 42 15 28 10 4
25 Umbrella 309 15 195 9 7
26 Handbag 399 30 286 9 14
33 Kite 156 12 103 4 2
36 Skateboard 135 5 95 2 2
58 Potted Plant 642 48 443 23 8
74 Clock 567 63 324 39 15

where Ipred is the predicted image and Igt is the ground truth image. The
L1 loss ensures pixel-wise accuracy, while the SSIM loss promotes structural
similarity.

The total loss Ldiff combines the diffusion objective function, the noise loss,
the frequency loss, and the photo loss as follows:

Ldiff = Lnoise + Lfrequency + Lphoto. (4)

This comprehensive loss function ensures that our TriFuse network not only
focuses on the diffusion process but also effectively preserves fine details and
maintains high content fidelity throughout the image enhancement process.

Dataset (Linked with Fig.6 and Table 7 of Section 5). We also prepared
our dataset for research related to object detection tasks under low-light con-
ditions. We annotated the ground truth images of the synthetic validation set
using YOLOv10 [4] and then tested the low-light images of the same subset using
YOLOv10 [4]. The detected objects for high-light and low-light images are pre-
sented in Table 1. The results indicate that YOLOv10 [4] struggles to detect all
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Algorithm 1 Training steps of our proposed TriFuse model.

1: Require: Average coefficients of low/normal-light image pairs ÃK
low and AK

high,
denoted as x̃ and x0, respectively, the time step T , the number of implicit sampling
steps S, and the model parameters θ.

2: Procedure: Train TriFuse
3: while Not converged do
4: Forward diffusion process
5: t ∼ Uniform{1, · · · , T}
6: ϵt ∼ N (0, I)
7: Compute the noisy image:

xt =
√
ᾱtx0 +

√
1− ᾱtϵt

8: Perform a single gradient descent step to minimize the loss:

Ldiffusion = ∥ϵt − ϵθ(xt, x̃, t)∥2

Here, ϵθ is the noise prediction model incorporating the conditional noise module
(CNM).

9: Denoising process
10: x̃T ∼ N (0, I)
11: for i = S : 1 do
12: t = (i− 1) · T

S
+ 1

13: tnext = (i− 2) · T
S
+ 1 if i > 1, else 0

14: CNM(x̃t) = ϵθ(x̃t+1, x̃, t)
15: Update x̃t:

x̃t ←
1√
αt

(
x̃t+1 −

1− αt√
1− ᾱt

ϵθ(x̃t+1, x̃, t)

)
+ σtη

16: end for
17: Obtain the final denoised image x̃0

18: Apply the edge sharpening module (ESM) to x̃0 to enhance edges, producing
x̃sharp
0 :

x̃sharp
0 = ESM(x̃0)

19: Perform a single gradient descent step to minimize the reconstruction loss:

Lreconstruction = ∥x̃sharp
0 − x0∥2

20: end while
21: End Procedure

objects accurately under low-light conditions, as evidenced by the significantly
reduced number of detected objects compared to their corresponding high-light
versions. This emphasizes the necessity of low-light image enhancement, particu-
larly for street-scene types where autonomous systems rely heavily on computer
vision tasks such as object detection.
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Algorithm 2 Inference steps of our proposed TriFuse model.

1: Require: Input image x0, trained model parameters θ, time step T , and the num-
ber of implicit sampling steps S.

2: Procedure: Inference with TriFuse
3: Initialize x̃T ∼ N (0, I)
4: for i = S : 1 do
5: t = (i− 1) · T

S
+ 1

6: tnext = (i− 2) · T
S
+ 1 if i > 1, else 0

7: CNM(x̃t) = ϵθ(x̃t+1, x̃, t)
8: Update x̃t:

x̃t ←
1√
αt

(
x̃t+1 −

1− αt√
1− ᾱt

ϵθ(x̃t+1, x̃, t)

)
+ σtη

9: end for
10: Obtain the final denoised image x̃0

11: Apply the edge sharpening module (ESM) to x̃0 to enhance edges:

x̃sharp
0 = ESM(x̃0)

12: End Procedure

13: ENSURE x̃sharp
0

Visualizations (Linked with Qualitative Analysis of Section 5). The
sample enhanced images from our LoLI-Street synthetic validation set and real
low-light testset using pre-trained weights of various SOTA low-light image en-
hancement models are shown in fig:fig1. The figure clearly demonstrates that
the SOTA low-light image enhancement models face difficulties in enhancing

Fig. 1: Enhanced images by using the pre-trained weights of SOTA low-light
image enhancement models on a random image from the (a) synthetic validation
set and (b) real low-light testset of our LoLI-Street dataset.
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Fig. 2: Inference on some randomly picked images from different mainstream
datasets (LOLv1 [6], LOLv2 [7], LSRW [3], and SICE [1]) using our proposed
TriFuse model.

Fig. 3: Sample images from non-urban street scenes enhanced using the proposed
TriFuse model. The top row shows the original low-light images, while the bot-
tom row displays the enhanced versions, illustrating the model’s effectiveness in
diverse environments.

the images, particularly those from the real low-light testset, highlighting the
challenges inherent in our LoLI-Street dataset. Therefore, it signifies the need to
develop and train more robust models, particularly for street scene types. On the
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Table 2: Evaluating the impact of different types of image degradations on
BRISQUE and NIQE metrics. The table presents performance under various
levels of blur (σ), noise (γ), and JPEG compression (η).

Metrics
Blur Noise JPEG Compression

σ(0.3) σ(0.5) σ(0.7) γ(0.1) γ(0.2) γ(0.3) η(20) η(30) η(50)

BRISQUE↓ 31.56 31.42 34.71 56.18 69.47 74.72 40.08 31.93 26.67
NIQE↓ 12.16 11.79 12.11 18.78 30.12 35.44 14.26 14.09 18.78

other hand, training the same models on our dataset improves the performance
of the models, as presented in the main paper.

The inference results on some random images from different mainstream
datasets (LOLv1 [6], LOLv2 [7], LSRW [3], and SICE [1]) using our proposed
TriFuse model are presented in fig:fig2. The results illustrate the effectiveness of
our proposed TriFuse model in enhancing visual quality across different types of
low-light scenarios, demonstrating improved clarity and detail preservation.

To test the effectiveness of the proposed TriFuse model in enhancing low-light
images from non-urban street scenes, we test a few randomly collected images
as presented in Fig. 3, which demonstrates the model’s capability to effectively
enhance visibility and detail in various environments beyond urban streets.

Ablation (Linked with Ablation Study of Section 5). Table 2 evaluates
the impact of different types of image degradations on our proposed TriFuse
model using BRISQUE and NIQE metrics. The table categorizes performance
under three degradation types: blur, noise, and JPEG compression. Each type
is measured at varying levels, denoted by σ for blur, γ for noise, and η for
JPEG compression. The results show that as the levels of these degradations
increase, both BRISQUE and NIQE scores worsen, indicating a decline in the
image quality enhanced by our TriFuse model. For instance, BRISQUE values
increase significantly from 31.56 to 74.72 as noise γ increases from 0.1 to 0.3,
demonstrating the sensitivity of the model performance for adding Gaussian
noise to the low-light images. Increasing the blurriness amount in the image
from 0.3 to 0.7 resulted in only a slight increase in the BRISQUE value, from
31.56 to 34.71, and in the NIQE value, from 12.16 to 12.11. This contrasts
with the significant changes observed when noise was added. Experiments with
JPEG compression revealed that increasing the compression level η from 20
to 30 reduced the BRISQUE value from 40.08 to 26.67, while the NIQE value
increased from 14.26 to 18.78. These findings indicate that, beyond the effects
of low light on various degradations, TriFuse encounters challenges because it
was not primarily trained for these additional degradation types. This highlights
the need for future research to develop image enhancement methods capable of
handling a wider range of degradations. The analysis emphasizes the necessity
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for robust enhancement techniques to preserve image quality across different
degradation scenarios, particularly under low-light conditions.
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