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1 Overview

We provide additional details and results in this Appendix. In Sec. 2.1, more
qualitative comparisons with other variants of DFIMat is given. We further ex-
plore the fine-grained level performance, robustness, and generalization analysis
of DFIMat in Sec. 2.2 to Sec. 2.4. In Sec. 2.5, we provide the definition of the
most salient area (mentioned in L-382 of the manuscript). Examples of different
user input types are given in Sec. 2.6. Sec. 3.1 provides additional user stud-
ies on the generated dataset, demonstrating its excellent visual authenticity. In
Sec. 3.2 we give more statistics (dataset split) about SMPMat. We introduced
how to obtain text prompt for image synthesis in Sec. 3.3. In Sec. 3.4, we give
the details about the instance-level text description annotations in the proposed
SMPMat dataset.

2 More Details of Experiments

2.1 More Qualitative Comparison with other variants of DFIMat

Since only the full model (i.e., mix trained & inference) of DFIMat has been
given in the manuscript, here we also give the qualitative result of other variants
of DFIMat. As shown in Fig. Å1, Our method also consistently outperforms all
existing methods under different input settings, and the matting quality achieves
the best under our full model.

2.2 Fine-Grained Analysis

Tab. Å1 substantiates our claim of achieving fine-grained superiority, partic-
ularly evident in the meticulous handling of intricate details and transitional
zones within our model’s output. To further validate this assertion, we have
incorporated the SAD in transition areas (SAD-T) metric into our evaluation
framework. This metric is specifically designed to evaluate the errors of transition
regions, which contains crucial fine details in the matting task.

* These authors contributed equally to this work.
† Corresponding author.

https://orcid.org/0009-0005-6114-1020
https://orcid.org/0000-0001-8467-5862
https://orcid.org/0000-0003-2736-3920
https://orcid.org/0000-0002-9167-1496


2 Jiao et al.

C
li

ck
 I

n
p

u
t

(b
) 

A
ct

iv
eM

a
tt

in
g

(c
) 

D
II

M
(d

) 
F

G
I

(e
) 

R
IM

(f
) 

S
m

a
rt

S
cr

ib
b

le
s

(g
) 

U
G

D
M

a
tt

in
g

(i
) 

O
u

rs
 (

sc
ri

b
b

le
)

(j
) 

O
u

rs
 (

b
o
x

)
(k

) 
O

u
rs

 (
te

x
t)

(l
) 

O
u

rs
 (

m
ix

)
(h

) 
O

u
rs

 (
cl

ic
k

)
(a

) 
Im

a
g

e

S
cr

ib
b

le
  
In

p
u

t
B

o
x

  
In

p
u

t
T

ex
t 

 I
n

p
u

t
M

ix
  
In

p
u

t

Fig.Å1: More comparisons with other variants of DFIMat.
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By including SAD-T in our analysis, we demonstrate a marked improvement
in managing these critical areas, thus confirming our model’s capability to excel
in fine-grained processing.

Table Å1: Fine-grained analysis on SMPMat.

Method SAD(↓) SAD-T(↓)
Prev. SOTA(MatAny) 25.73 11.82

DFIMat 22.89 9.52
DFIMat-S 24.94 10.3

2.3 MRN’s Robustness

In order to thoroughly test the resilience and adaptability of our proposed Mat-
ting Refinement Network (MRN), we subjected the predicted masks obtained
from the Interactive Semantic Capture Network (ISCN) to a series of rigorous
tests involving the introduction of noise. This was achieved by applying mor-
phological processing techniques, following the established protocol delineated
in prior work [4], to systematically perturb the initial mask predictions.

The purpose of this experiment was twofold: first, to emulate real-world con-
ditions where masks may be inherently imperfect due to various factors such as
image quality, lighting conditions, or inherent limitations of the initial segmen-
tation algorithm; second, to assess the robustness of MRN in the face of such
inaccuracies, which are common in practical applications.

The results presented in Table Å2 thus underscore the reliability of MRN as
a post-processing step in image matting, particularly when dealing with noisy
or imperfect input masks. This robustness ensures that MRN can be seamlessly
integrated into workflows where the initial segmentation might not be perfect
due to various constraints or limitations.

Table Å2: Robust to noisy MRN input.

Input SAD(↓) SAD-T(↓)
dilate 23.36 9.88
erode 23.59 10.01
mix 23.41 9.95
none 22.89 9.52
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Fig.Å2: Examples of different input type, where red and green respectively represent
the clicks (scribbles) belonging to the foreground/background categories, the yellow
rectangles are used as box input, and the blue rectangles denote the most significant
area calculated based on the previous prediction results.

2.4 Generality

To further probe into the versatility and broad applicability of our proposed
model, we conducted extensive experiments on the Refmatte dataset [2]—a col-
lection encompassing a wide array of foreground categories.

Our model, in this rigorous testing ground, not only met but surpassed ex-
pectations, demonstrating a remarkable superiority over the leading competi-
tor, MatAny [3]. Specifically, in terms of the SAD metric, our model exhibited
a notable 2.07 advantage, achieving an impressive SAD of 6.17 compared to
MatAny’s 8.24. This significant margin of victory is indicative of our model’s
superior adaptability and robustness, enabling it to handle the intricacies and
variances of different foreground categories with finesse.

2.5 Definition of the Most Significant Area

In the multi-rounds interactive image matting, to simulate a realistic interaction
process, we add new user input in the area with the most significant error in
the previous prediction result. Specifically, we evenly divide the input image into
a grid of 4 × 4 regular regions, and calculate the sum of the alpha differences
between the previous prediction result and the ground truth (GT) in each region.
The region with the largest difference is regarded as the most significant area.
Such setup ensures that the simulated inputs are in consistent alignment with
real-world interactions.
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2.6 Examples of Different Input Type

We give some examples of different input types in Fig. Å2. Each column of click,
scribble, and mixed input types represents newly added input in the next round
of interaction. Box type input allows the user to not completely align the edges
of foregrounds. Mixed inputs can compensate for the limitations of a single type
of input in foreground determination, especially for text input.

3 More Details about SMPMat

3.1 User Study

Sec. 5.4 of the manuscript presents quantitative experiments demonstrating that
our SMPMat dataset outperforms other synthetic datasets in enhancing model
performance. In order to further reflect the image quality of the generated
dataset, we conducted a user study on the SMPMat dataset. The user study
selected 1,000 images each from the SMPMat dataset and a subset of generated
images from HIM2K. Fifty volunteers were invited to compare images from both
datasets and select those they deemed more visually realistic. Specifically, each
volunteer was given 50 images from each dataset and asked to pick out the 30
most realistic-looking images among the total of 100. To minimize the impact
of individual bias on experimental fairness, each image was assessed by multiple
volunteers.

The statistical outcome revealed that, out of 1,500 images judged to be closer
to real images (excluding duplicates), 96.2% originated from SMPMat, while
only 3.8% came from the synthetic images of HIM2K. The reason some SMP-
Mat samples ranked lower in quality was due to deformations in human fingers
and limbs, an issue requiring optimization of the stable diffusion model. However,
overall, SMPMat had a clear edge in foreground-background style consistency
and distribution, with content more closely adhering to real-world image pat-
terns. The statistical results from the subjective evaluation further confirmed
that the SMPMat dataset effectively narrowed the visual gap with real images.

3.2 More Statistics of SMPMat

We present more details about the statistics of SMPMat in Tab. Å3. Images
were randomly split, with 60% going into training set and 40% into validation
set.

Table Å3: The number of images and instances of different subsets

Image Instance
Training set 36,000 128,273

Validation set 4,000 14,084
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3.3 Text Prompt Generation for Image Synthesis

In the image synthesis stage of SMPMat, we use GPT-4 [1] to obtain diverse
and rich prompts and input them into our data generation pipeline.

Firstly, specific positive prompt prefix and negative prompt are set to enhance
image quality and detail richness:

Positive Prompt Prefix: best quality, ultra detailed, masterpiece.
Negative Prompt: lowres, bad anatomy, bad hands, missing fingers, extra
digit, fewer digits, mutated hands, poorly drawn hands, poorly drawn face,
cropped, worst quality, low quality, normal quality, artifacts, signature, wa-
termark, blurry, extra arms, extra legs, missing arms, missing legs, long neck,
humpbacked, bad feet, nsfw

Then, we divide the mainly used content-description prompt words into 10 cat-
egories, and refer to GPT-4 [1] and existing AI painting prompt generation
websites (e.g., prompttool) to gather candidate prompt words for each category,
creating a comprehensive vocabulary repository. In Tab. Å4 we list the number
of attributes (including foreground instance number) and the statistics for some
attributes under each category, based on the text prompts used for image gener-
ation. For each image generation, we randomly sample prompt words from the
vocabulary repository and combine them with commas, as shown in Algorithm 1.
The style for image is set as photographic.

Table Å4: Prompt vocabulary library.

Category Num. Representative attribute (counts)

Back-
ground

Environment 70 in autumn (64), fireworks (48), ...
Weather 28 drizzle (58), hail (40), ...
Scene 586 grove (61), castle (45), ...

Fore-
ground

Number 4 2 (11806), 3 (11095), 4 (9775), 5 (7324)
Eyes 43 brown eyes (1462), crazy eyes (1210), ...
Hair 51 long hair (1551), pony-tail (1079), ...

Identity 97 doctor (1668), teacher (1493), ...

Action

Hand 26 stretch (102), hands up (171), ...
Leg 23 crossed legs (115), leg lift (108), ...

Basic 20 grovel (126), squat (185), ...
Compound 48 hug (172), princess carry (146), ...

3.4 Instance-level Text Description Annotation in the proposed
SMPMat Dataset

Instance-level text description annotation is available in the proposed SMPMat
dataset, which provides textual descriptions of each human instance and thus can
be used for referring image matting. We use an automatic generation pipeline to
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Algorithm 1 Algorithm of Prompt generation
Output: positive prompt Pp, negative prompt Pn

1: background = Sampler({Environment, Weather, Scene}, 1)
2: foreground_num = random_int(2,5)
3: if random_float(0,1)>0.5 then
4: identities = Sampler(Identity, Consistent_flag=True, foreground_num)
5: else
6: identities = Sampler(Identity, Consistent_flag=False, foreground_num)
7: end if
8: action = Sampler({Hand Action, Leg Action, Compound Action}, 1)
9: face = Sampler({Eyes, Hair}, 1)

10: Ppp = constant_positive
11: Pp = Concat(Ppp, background, identities, action, face, ",")
12: Pn = constant_negative
13: return Outputs

generate those annotations. Specifically, we follow the expression generation en-
gine in [2] to generate text annotations for SMPMat. We generate three types of
text annotations for each foreground: basic expression, absolute position expres-
sion, and relative position expression. The basic expression describes the target
foreground solely based on its attributes. In the absolute position expression, the
target foreground is characterized by both its attributes and its absolute position
within the image. The relative position expression details the target foreground
by considering its attributes and establishing its position in relation to another
foreground. Each type of expression has 2 fixed formats:

Basic expression:
the/a ⟨att0⟩ ⟨att1⟩ . . . ⟨ide0⟩
the/a ⟨ide0⟩ who/that is ⟨att0⟩ ⟨att1⟩, and ⟨att2⟩.
Absolute position expression:
the/a ⟨att0⟩ ⟨att1⟩ . . . ⟨ide0⟩ ⟨rel0⟩ the photo/image/picture
the/a ⟨ide0⟩ who/that is ⟨att0⟩ ⟨att1⟩ ⟨rel0⟩ the photo/image/picture.
Relative position expression:
the/a ⟨att0⟩ ⟨att1⟩ ... ⟨ide0⟩ ⟨rel0⟩ the/a ⟨att2⟩ ⟨att3⟩ ... ⟨ide1⟩
the/a ⟨ide0⟩ who/that is ⟨att0⟩ ⟨att1⟩ ⟨rel0⟩ the/a ⟨ide1⟩ who/that is ⟨att2⟩ ⟨att3⟩.

where ⟨atti⟩ represents attributes (e.g., color and clothing type predicted by off-
the-shelf model), ⟨ide0⟩ denotes identity (referencing the prompt during image
synthesis). ⟨reli⟩ delineates the relationship between the target foreground and
the associated foreground ⟨idei⟩. This relationship is determined by comparing
the positions of the geometric centers of the foregrounds, with four categories:
left, right, in front of , and behind. In the annotation generation stage, we
randomly select one format for each type of description.
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