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In this supplementary material, we provide the additional qualitative results
(Sec. 1), additional experiments (Sec. 2), pseudo-code of the overall pipeline
(Sec. 3), and implementation details (Sec. 4), which are not presented in the main
paper due to space limitations.

1 Additional Qualitative Results

Cosine Similarity. We present the 3D feature cosine similarity maps (See
Fig. S1). After extracting 3D point-wise features through a pre-trained 3D model,
cosine similarity is computed between the query point (red dot) feature and all
the other point features. Then, visualization is performed by projection to the
corresponding image. The projected points’ colors go from violet to yellow for
low and high similarity, respectively. The results show that a pre-trained model
with treatments learns a more coherent 3D representation of the same objects.

2 Additional Experiments

2.1 Keyframe Only

As shown in Table 2 of the main paper, our method utilizes the unsynced
inter-frame LiDAR point clouds from the nuScenes dataset [3]. To ensure a fair
comparison with previous image-to-LiDAR distillation methods that only use
synced keyframe data, we report the results of our method using only the keyframe
data. The Ours-Keyframe method matches keyframe images with keyframe LiDAR
from different timestamps rather than matching inter-frame LiDAR with keyframe
images to compose unsynced data (See Table S1b). Although relying solely on
keyframes can increase the misalignment between points and pixels, our method
still outperforms the previous methods (See Table S1a).
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Reference SLidR SLidR + Treatment 1 SLidR + Treatments 1&2

Fig. S1. Qualitative results of cosine similarity. The cosine similarity between
the query point (red dot) and the 3D point feature learned with SLidR, SLidR with
treatment1, and SLidR with treatments 1 and 2. The projected points’ colors go from
violet to yellow for low and high similarity, respectively. We show these results in the
validation set of nuScenes [3]. This result shows that SLidR with treatments learns a
more coherent 3D representation of the same objects.

Table S1. 3D semantic segmentation results on nuScenes and SemanticKITTI
validation sets. We compare our method using only the keyframe with the existing
3D representation learning methods using the nuScenes and SemanticKITTI datasets.
Our method using only the keyframe surpasses the existing methods across all metrics.

Method nuScenes SemanticKITTI

Lin. Prob. 1% 1%

Random 8.1 30.3 39.5
PointContrast [14] 21.9 32.5 (+2.2) 41.1 (+1.6)
DepthContrast [15] 22.1 31.7 (+1.4) 41.5 (+2.0)
PPKT [9] 36.4 37.8 (+7.5) 43.9 (+4.4)
SLidR [13] 38.8 38.2 (+7.9) 44.6 (+5.1)
ST-SLidR [10] 40.4 40.7 (+10.4) 44.7 (+5.2)
TriCC [11] 38.0 41.2 (+10.9) 45.9 (+6.4)

Ours-Keyframe 46.3 41.6 (11.3) 50.3 (10.8) keyframekeyframe keyframeinter-frameinter-frame
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2.2 Various Voxel Sizes

We report how changing the voxel size for each coordinate affects linear probing
performance on the nuScenes dataset. We denote the voxel size for cylindrical
coordinate as the values of δρ and δz.

In cylindrical coordinate, a voxel size of 10cm, and in Cartesian coordinate,
a voxel size of 5cm, are found to be best. Regardless of the coordinate system,
excessively reducing the voxel size to minimize quantization error can lead to a
significant decrease in performance (See Table S2). While over-reducing the voxel
size decreases quantization error and increases the number of preserved raw points,
it can result in sparse data, with most voxels being empty. This sparsity can pose
challenges for 3D networks in effectively learning and recognizing patterns.
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Table S2. Impact of coordinate and various voxel sizes. We report that changing
the voxel size for each coordinate affects linear probing performance on the nuScenes
dataset, with optimal sizes being 10cm in cylindrical coordinates and 5cm in Cartesian
coordinates. However, excessively reducing the voxel size results in data sparsity, which
poses challenges for 3D network pattern recognition.

Coordinate
Voxel Size (cm) 1 5 10 20

Cylindrical 33.0 38.0 38.8 37.5
Cartesian 31.3 41.2 40.8 40.8

Table S3. Ablation study on the number of sampling inter-frame LiDAR.
Performance improvements are marginal whether sampling once or twice. This indicates
the importance of using unsynced data itself to achieve better results.

# inter-frame nuScenes

Lin. Prob. (100%)

Synced Only 41.2
1 45.2
2 45.3 keyframekeyframe keyframeinter-frameinter-frame
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2.3 The Number of Sampling Inter-frame LiDAR

We report the performance variations based on the number of LiDAR samplings
in inter-frame data when utilizing unsynced data. The difference in performance
between sampling once and sampling twice is negligible (See Table S3). This
indicates that the utilization of unsynced data itself is crucial.

2.4 Dynamic Point Cloud Accumulation

We compare PPM’s point cloud accumulation performance with that of existing
methods, WsRSF [6] and PCAccumulation [7]. PPM is based on an unsupervised
method, WsRSF on a weakly supervised method, and PCAccumulation on
a supervised method to point cloud accumulation. PPM demonstrates good
performance on static parts but has room for improvement in handling dynamic
parts, which are a primary cause of misalignment on unsynced data (See Table S4).
As shown in Table 2 of the main paper, correcting misalignments with PPM can
enhance the performance of image-to-LiDAR distillation. Following this trend,
we expect that replacing PPM with a more effective point cloud accumulation
method could further improve the performance of image-to-LiDAR distillation.
However, LiDAR 3D scene flow needs to be trained whenever the data domain is
changed; its model designs often cover a limited range and point cloud. Therefore,
we propose the PPM, whose design motivation is its unsupervised manner and
versatility with respect to LiDAR characteristics and environments.
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Table S4. Dynamic Point Cloud Accumulation results on nuScenes. Point
cloud accumulation performances show that PPM, an unsupervised method, excels in
static parts but has room for improvement with dynamic parts, in contrast to WsRSF,
a weakly supervised method, and PCAccumulation, a supervised method.

Method Strategy Static part Dynamic foreground

EPE avg.↓ AccS↑ AccR↑ ROutlier↓ EPE avg.↓ EPE med.↓ AccS↑ AccR↑ ROutliers↓

N/A - 1.452 18.0 19.5 74.1 1.903 1.017 2.4 6.5 79.7
WsRSF [6] Weakly 0.195 57.4 82.6 4.8 0.539 0.204 17.9 37.4 32.0
PCAccumulation [7]Supervised 0.111 65.4 88.6 1.1 0.301 0.146 26.6 53.4 12.1
PPM Unsupervised 0.102 83.0 89.2 5.0 0.992 0.409 13.3 26.3 49.5

Table S5. Additional Verification of Treatment 1. We report the performance
of SLidR using different 3D voxel-based backbones, divided at the midline, with both
Cylindrical and Cartesian coordinates. The results are presented for three different
runs. Specifically, VoxelNet is pre-trained for 20 epochs. Consistent improvements are
observed with the use of treatment1 across multiple runs and different backbones.

Method Coordinate 3D backbone nuScenes (100%)

Lin. Prob. (run 1) Lin. Prob. (run 2) Lin. Prob. (run 3)

SLidR Cylindrical MinkUNet 38.8 38.4 38.9
SLidR Cartesian MinkUNet 41.6 41.2 41.8

SLidR Cylindrical VoxelNet 25.0 25.5 25.3
SLidR Cartesian VoxelNet 27.3 26.8 26.3

2.5 Additional Verification of Treatment1

We verify the usefulness of treatment1 by adapting different voxel-based networks
and conducting multiple runs. Table S5 shows that voxel-based networks with
treatment1 consistently outperform those without it, even after multiple runs.

2.6 Complexity and Extra Memories for Treatments

Using PPM, the whole nuScenes dataset can be processed in 5 hours. As a data
preprocessing method, PPM only needs to be performed once. Table S6 shows
per GPU memory consumption, per epoch training time, and linear probing
performance (LP) when applying Treatment 1&2. While our treatments slightly
increase memory consumption and training time, our performance improvement
is notable compared to (E) SLidR with similar resource

2.7 Different 2D Backbone for Distillation

To verify that our treatments are consistently applicable to different pre-trained
2D backbones, we replace the pre-trained 2D backbone with a ViT-S/8 model
trained with DINO and report the performance. Table S7 shows consistent
performance improvements, demonstrating that our treatments are effective
across various 2D backbones.
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Table S6. Resources required for Treatment 1&2. We report the per GPU memory
consumption, per epoch training time, and linear probing performance (LP) when
applying Treatment 1&2. While our treatments slightly increase memory consumption
and training time, performance improvement is notable compared to SLidR, which has
similar resources.

Method Epoch Batch size Memory [MB] Time [hour] LP

(A) SLidR (Cylindrical) 50 16 10.4 0.5 38.8

(B) + Treatment 1 (Cartesian) 50 16 12.8 0.7 41.2
(C) + Treatment 2 (PPM) 50 32 18.4 0.9 41.2

(D) + Treatment 1&2 (ours) 50 32 21.6 1.2 45.2
(E) + Treatment 1&2 (ours) 20 16 13.0 0.5 44.7

Table S7. Linear Probing results of different 2D backbones. We report the
performance of various methods using different pre-trained 2D backbones, specifically
comparing MoCov2 and DINOv1. The methods are pre-trained on the nuScenes dataset.
The results demonstrate that our treatments show the highest improvement in perfor-
mance across both backbones, indicating consistent applicability of our treatments to
various 2D backbones.

Method Pretrain 2D backbone

dataset MoCov2 DINOv1

PPKT Nuscenes 36.4 38.6
SLidR Nuscenes 38.8 39.3
Ours Nuscenes 45.2 47.3

Table S8. Linear Probing results of different frame gaps. We report the linear
probing (LP) performance for different frame gaps, ranging from 1 to 40. The results
indicate that performance increases as the frame gap increases up to 10 frames and
then slightly decreases as the frame gap continues to increase.

Method Frame Gap

1 5 10 20 30 40

Ours 45.6 47.3 47.3 47.1 47.2 46.5

2.8 Results of Different Frame Gaps

We experiment to see how performance changes according to different frame
gaps from keyframe data. We evaluate our treatments using a ViT-S/8 2D
backbone trained with DINO, measuring LP performance with frame gaps up
to 40. Table S8 shows that performance increases as the frame gap increases
up to 10 frames and then decreases as the frame gap continues to increase. The
performance increase is likely due to data diversity, while the decrease is likely
due to the expected increase in PPM errors.
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3 Algorithm

In this section, we provide a pseudo-code of our overall pipeline in Algo.1. The
sampling function is designed to alleviate data redundancy by more frequently
sampling data from inter-frames that are farthest from the keyframe. Transfor-
mation Z is initialized to an identity matrix for all points, and the computed
transformation is assigned only to points classified as moving. Within the trans-
formation function, x_p_s is transformed to global coordinates, transformed by
Z, and restored to LiDAR sensor coordinates. Within the pixelPointMatching
function, x_p_t and x_p_s_trans are transformed from LiDAR sensor coordi-
nates to camera sensor coordinates and projected to the 2D coordinate of x_i_t
through the camera intrinsic matrix. The pixelPointMatching function creating a
pixel-point matching index corresponds to function T , first mentioned in Sec. 3.2
of the main paper. For brevity, the algorithm does not include the matching of
SLIC [1] based superpixels and corresponding point clouds matching.

4 Implementation Details

Positive Pair Mining (PPM). Figure S2 describes the overall scheme of PPM.
The 11 number of consecutive point clouds {P t−5, ..., P t, ..., P t+5} are aggregated
in the global coordinate through the relative poses readily obtained from GPS
and IMU [5]. We first split the aggregated points into ground and non-ground
points in sequence using an unsupervised ground removal method [8]. The non-
ground points are converted to clustered points using HDBSCAN [4], and they
pass through two consecutive steps: Moving cluster tracking and Cluster-wise
ICP, as shown in Fig. S3. Moving cluster tracking identifies clusters that are in
motion. We form each cluster’s points in consecutive times and then calculate
their center coordinates. If any l1 distance between the center coordinates of
consecutive times exceeds the threshold c, we categorize the points in the cluster
as moving points and non-moving ones otherwise. We set c to 0.5 meter. The
clusters of moving points are fed to the Cluster-wise ICP. In the Cluster-wise
ICP, we apply an unsupervised point cloud matching [12] to each moving cluster
by exploiting the keyframe as the reference frame. This mining process outputs
the 3D transformation Z for each cluster that is combined with T to obtain the
positive pixel-point matching index.

For ground removal, we utilize the patchwork++7 [8]. Because the official
implementation is designed for the SemanticKITTI dataset [2], to apply it to the
nuScenes dataset [3], we modified to set the mean coordinates of the aggregated
point clouds to zero by subtracting the mean coordinates. For the HDBSCAN
clustering [4], we set a minimum number of clusters to 50, the number of clusters
to 300, α to 1, distance metric to Euclidean, and the leaf size to 100. For the
mean tracking in cluster tracking.

7https://github.com/url-kaist/patchwork-plusplus
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Algorithm 1: PyTorch-style pseudo-code of ours overall pipeline.
# f_p, f_i: 3d and 2d network
# x_p_t, x_p_s: 3d point cloud at keyframe t and inter-frame s
# x_p_s_list: list of 3d point cloud at inter-frames
# x_i_t: 2d image at keyframe t
# aug_p, aug_i: Augmentations for point clouds and images
# quant: Quantization for point clouds

for x_p_t, x_p_s_list, x_i_t in loader:

Z = ppm(x_p_t, x_p_s_list, x_i_t)# get transformation Z

s_i = sampling(x_p_s_list)# get index at inter-frame s
x_p_s, Z = x_p_s_list[s_i], Z[s_i]
x_p_s_trans = transformation(x_p_s, Z)# get transformed points

# get positive pixel-point matching index
i_t_i, p_t_i = pixelPointMatching(x_i_t, x_p_t)
i_s_i, p_s_i = pixelPointMatching(x_i_t, x_p_s_trans)

# augment, quantize, and feed-forward
F_p_t, F_p_s, F_i_t = f_p(quant(aug_p(x_p_t))),
f_p(quant(aug_p(x_p_s))), f_i(aug_i(x_i_t))

# pair point and pixel-wise feature
F_p_t, F_p_s, F_i_t, F_i_s = F_p_t[p_t_i], F_p_s[p_s_i],
F_i_t[i_t_i], F_i_t[i_s_i]

loss = contrastDistill(cat(F_p_t, F_p_s), cat(F_i_t, F_i_s))
loss.backward()
update(f_p, f_i)

def ppm(x_p_t, x_p_s_list, x_i_t):

Z = eye(4).reshape((1, 4, 4)).repeat(len(cat(x_p_t,
x_p_s_list)), 1, 1)

# aggregation in the global coordinate
x_p_t, x_p_s_list = sensor2global(x_p_t),
sensor2global(x_p_s_list)

x_p = cat(x_p_t, x_p_s_list)

g_i = groundRemoval(x_p)# get ground point index
x_p_ng = x_p[∼ g_i]# get non-ground point

c_i = clustering(x_p_ng)# get cluster index

m_i = movingClusterTracking(x_p_ng, c_i)# get moving point index

x_p_m, c_i = x_p_ng[m_i], c_i[m_i]# get moving point and moving
cluster index

Z[∼g_i][m_i] = clusterWiseICP(x_p_m, c_i)# assign computed transformation

return Z[len(x_p_t):]# return transformation Z at inter-frames

def contrastDistill(F_p, F_i):

logits = mm(norm(F_p), norm(F_i).T)
loss = crossEntropyLoss(logits/τ , range(len(F_p)))

return loss



8 W. Jo et al.

Ground Removal

Consecutive point clouds

Moving Cluster Tracking

Cluster-wise ICPAggregation
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Point-Pixel Matching Positive Pairing Index
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Frame t + 5

Aggregated points

Non-ground pointsGround points
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Fig. S2. The overview of the Positive Pair Mining (PPM) module. The
Positive Pair Mining consists of four components, i.e., aggregation, ground removal,
clustering, moving cluster tracking, cluster-wise ICP, and point-pixel matching steps.
The aggregation step aggregates consecutive point clouds in the global coordinate.
The ground removal step separates aggregated points into ground and non-ground
points. The moving cluster tracking and cluster-wise ICP transform all the moving
points from the inter-frames into the nearest keyframe t. The point-pixel matching step
constructs positive pairs of 3D-2D by projecting transformed 3D points to the 2D image
at keyframe t.

Non-moving points

Clustered points

Cluster-wise ICP

Non-ground points

Moving Cluster Tracking

Moving points Transformed points

Fig. S3. The pipeline of moving cluster tracking and cluster-wise ICP. (moving
cluster tracking) To distinguish the non-moving and moving points from the clustered
points, we form each cluster’s points in consecutive times and then measure their center
coordinates. If any L1-distance is larger than the threshold c, we categorize the points
in the cluster into moving points. (cluster-wise ICP) Using an unsupervised point cloud
matching method, we obtain the 3D transformation Z to the keyframe for generating
the positive pairing index.
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