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In this Supplementary Material, we present:

– Implementation details (Sec. S1)
– Discussions on simple editing with shallower depth on IP2P (Sec. S2)
– Additional analyses on the time-step optimization (Sec. S3)
– Additional comparisons with AutoDiffusion (Sec. S4)
– Additional details and results on applications (Sec. S5)
– Discussions on the multi-depth search of IP2P (Sec. S6)
– Profiling on the parameter number and latency for Stable Diffusion (Sec. S7)
– Discussions on a challenge of step distillation in image restoration (Sec. S8)
– Additional latency and computational cost analysis (Sec. S9)
– Time-step optimization using different scheduler (Sec. S10)
– Additional qualitative results of StableSR (Fig. S7)

S1 Implementation Details

For the depth-search, we randomly sample 100 images from the training dataset
of each task. In StableSR [23], we set the PSNR threshold at 28 dB, using the
ground truth based on 50 iteration results. Regarding IP2P [2], we utilized a
combination of CLIP image similarity [17] and directional CLIP similarity [4],
which are the same evaluation protocol used in IP2P [2]. The threshold values
for these metrics were set at 0.7 and 0.2, respectively. Regarding ControlNet [24],
we set the FID [5] threshold at 22.

S2 Simple Editing with Shallower Depth on IP2P

IP2P [2] supports a wide range of image editing operations with various levels of
difficulty. This implies that different input text commands to IP2P may require
different depth levels, i.e., easy commands that do not alter the image structure
may require shallower depths than other commands. Fig. S1 shows examples of
such easy and difficult commands. In the figure, the commands “Make it autumn”
and “Make it cubism” are easy ones that do not alter image structures, while the
other commands shown on the right are difficult ones that change image struc-
tures. As shown in the figure, the shallow-depth model with only six depth levels
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Input Output (D6)

“Make it autumn” “Make it cubism”

Input Output (D6) Input Output (D6)

“Make him smile”

Fail in structure-modified editing

Output (D9)

“Replace the fruits 
with cup cakes”

“Swap sunflowers 
with roses”

Fig. S1: Various structure-preserved editing operates even after depth-skip compres-
sion at level 6, which uses 15.6% parameters. The shallower the depth-skip, the more
complex edits, such as structure-modified editing, tend to fail.
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Fig. S2: Quantitative comparison on time-step optimization for InstructPix2Pix [2].

(D6 in the figure), which uses only 15.6% parameters, successfully produces plau-
sible results for the easy commands, but fails for the difficult ones, for which, the
deeper-depth model with nine depth levels (D9) succeeds. This result suggests
that, by limiting target image editing operations to simple structure-preserving
ones, more effective depth-skip compression can be achieved.

S3 Additional Analyses on Time-step Optimization

Fig. S2 presents additional experimental results on our time-step optimization
for various iteration numbers, conducted on IP2P [2]. Our time-step optimiza-
tion achieves superior results compared to uniform sampling in terms of both
CLIP image similarity and CLIP text-image direction similarity for small itera-
tion numbers, as demonstrated in Fig. S2 (a). The differences among the uniform
sequence, our optimized sequence and 50-step sampling become marginal at 20
steps, as shown in Fig. S2 (d). This suggests that by transferring to simpler down-
stream tasks, the necessary number of iterations is naturally reduced compared
to the conventional 50-step approach.
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Table S1: The optimized values for the time-step control parameter γ varies with
change of CFG [6] values.

Iteration CFGI

1.0 1.2 1.4 1.6
5 0.322 0.333 0.377 0.435
10 0.556 0.581 0.617 0.704
15 0.709 0.714 0.833 0.833

Table S2: Time-step optimization results with and without depth-skip compression.
The optimized values for the time-step control parameter γ are almost identical between
the models with and without depth-skip compression, indicating that the time-step
optimization is not affected by the depth-skip compression.

5 step 10 step 15 step
Depth-skip - ✓ - ✓ - ✓

InstructPix2Pix [2] 0.322 0.322 0.556 0.556 0.709 0.714
StableSR [23] 1.900 1.900 1.600 1.600 1.610 1.610

Impact of CFG Classifier Free Guidance (CFG) [6] is a method that is widely
used in numerous conditional diffusion models to control the influence of condi-
tions on image generation. CFG provides a single strength parameter for each
condition to control its influence. To obtain a high-quality result that a user
wants, they often run diffusion models multiple times with different values for
the CFG strength parameters. IP2P [2], which is one of our target applications,
also utilizes CFG to control the strength of prompt or image conditions.

In this section, we additionally present an analysis on the impact of CFG on
the time-step optimization. Specifically, we conduct the time-step optimization of
IP2P [2] with different CFG strength parameter values for the image condition,
and with different iteration numbers. Tab. S1 shows the result where CFGI

indicates the CFG strength parameter for the image condition. As the result
reveals, changing the CFG parameter leads to significantly different values for
the time-step control parameter γ, which indicate different optimal time step
sequences, for all iteration numbers.

This result also validates the practicality of our computationally-efficient
time-step optimization method. To achieve high-quality results for different CFG
parameter values requires to perform time-step optimization multiple times,
which can be excessively time-consuming given the wide range of CFG parame-
ter values. Nevertheless, our time-step optimization can significantly reduce the
computational overhead compared to AutoDiffusion [8], which is the previous
state-of-the-art method, as our method performs at least 62 times faster than
AutoDiffusion, as shown in Table 4 in the main paper.

Impact of Depth-skip on Time-step optimization We analyze the impact
of depth-skip on the time-step optimization. To this end, we prepare two dif-
fusion models: one is an original full model, and the other is a depth-skipped
version obtained using our depth-skip compression. We then perform time-step
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Fig. S3: Visualization for our optimized time-steps

Table S3: Quantitative comparison with AutoDiffusion for ControlNet [24].

Step Method FID↓ CLIP-Score↑ CLIP-a ↑
5 AutoDiffusion [8] 28.77 30.35 5.81
5 Ours 28.26 30.38 5.85
10 AutoDiffusion [8] 24.21 30.39 5.98
10 Ours 23.29 30.40 6.00

optimization on both models, and compare the results. Tab. S2 shows the time-
step optimization results, where the optimal values for the time-step control
parameter γ are not affected by depth skip. This result indicates that the time-
step optimization and depth-skip compression are independent to each other,
allowing them to be performed parallel.

Optimized time-step visualization Fig. S3 visualizes the results of our opti-
mized time-steps. Consistent with our intuition, the results show that later time
steps are crucial in StableSR, whereas early time steps are more important in
other tasks.

S4 Comparisons on Time-step Optimization with
AutoDiffusion

In this section, we present additional quantitative comparisons on time-step
optimization with AutoDiffusion [8] using IP2P [2], StableSR [23] and Control-
Net [24]. Regarding IP2P, we set the CFG strength parameters for the image and
text conditions to 1.0 and 7.5, respectively, and optimize its time steps using our
time-step optimization approach and AutoDiffusion for five iterations. We then
evaluate the time-step optimization results using the CLIP image similarity [17]
and directional CLIP similarity [4]. Tab. S4 shows a comparison between our
result and the result of AutoDiffusion. As the table shows, our method achieves
higher CLIP image similarity and directional CLIP similarity scores within a
much shorter search time, proving the effectiveness of our approach.

For comparison on StableSR [23], we optimize the time steps of StableSR for
10 iterations using our time-step optimization approach and AutoDiffusion [8].
We then evaluate their results using the DIV2K validation dataset [1]. Tab. S5
shows that our approach achieves comparable results in terms of FID [5], PSNR,
and LPIPS [25] within a significantly shorter search time.
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Table S4: Comparison with AutoDiffu-
sion for InstructPix2Pix [2] at 5 steps.

Method CLIPI CLIPD Search Time
Ours 0.767 0.190 38.7 min

AutoDiffusion 0.765 0.188 40.5 hour

Table S5: Comparison with AutoDiffu-
sion for StableSR [23] at 10 steps.

Method FID PSNR LPIPS Search Time
Ours 34.956 22.250 0.461 11.1 min

AutoDiffusion 36.496 22.347 0.466 27.1 hour

+ High-frequencyHINet outputHINet Input + High-frequencyHINet outputHINet Input

Fig. S4: Qualitative results on high-frequency synthesis application.

Regarding ControlNet [23], we conduct comparisons for 5 and 10 iterations.
We then evaluate the results using the 5K COCO [10] validation dataset. Tab.
S3 shows that our approach outperforms for all criteria.

S5 Additional Applications

To train the high-frequency synthesis model in Sec. 4.5 in the main paper, we
use paired images consisting of a restored image and its ground-truth. To collect
the restored images, we employ a pretrained HINet [3], trained for deblurring
using the CelebA dataset [13]. To accommodate the additional input image, we
implement minor modifications to the input network layer, same as IP2P [2]. To
train the image inpainting model, we synthesize paired images where each image
pair consists of a masked-image and its ground-truth image using the OpenImage
dataset [7]. The text embedding is fixed as an empty text. Fig. S4 and Fig. S5
shows additional qualitative examples of the high-frequency synthesis and image
inpainting models, respectively.

S6 Analysis on Multi-depth Search on IP2P

We demonstrated the efficiency of our single-depth search over multi-depth
search on StableSR [23] in Sec. 3.3 in the main paper. This section presents
a similar analysis on IP2P [2], which is detailed in Tab. S6. we use the CLIP
image similarity [17] and directional CLIP similarity [4] for quality assessment.
When the model size is constrained, the multi-depth search solution achieves
marginal latency improvement over ours, while maintaining comparable qual-
ity, as shown in Tab. S6 (a). When the latency is constrained, optimizing the
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Fig. S5: Qualitative results on image inpainting application.

Table S6: Comparisons between single and multi-depth search applied to Instruct-
Pix2Pix [2]. The percentages at “Time” and “Param”, which indicates parameter, are
proportion to requirements in full model. This results suggest that our single-depth
approach efficiently searches the near-optimal point compared to a multi-depth search
strategy.

(a) Fix memory & Min time (b) Fix time & Max CLIPI (c) Fix time & Max CLIPD (d) Fix quality & Min time
( ∆CLIP < 0.005 ) ( ∆Time < 1% ) ( ∆Time < 1% ) ( ∆CLIP < 0.005 )

Depth ∆Time(%) ∆CLIPI ∆Param(%) ∆CLIPD ∆Param(%) ∆Time(%) ∆Param(%)
10 -7.46 +0.04 +18.73 +0.01 +18.73 -7.46 +0.00
9 -2.82 +0.03 +27.90 +0.01 +18.54 -6.30 +18.54
8 -6.64 +0.04 +36.01 +0.07 +26.64 -10.46 +17.47

quality using the multi-depth search leads to a significant increase in the param-
eter number, as shown in Tab. S6 (b) and (c). When the quality is constrained,
minimizing the latency also results in a trade-off involving an increase in the
parameter number, as shown in Tab. S6 (d). All these results suggest that our
single-depth search is already able to achieve near-optimal solutions despite its
considerably smaller search space.

S7 Profiling of Stable Diffusion

Tab. S7 shows the proportions of the parameter number and latency of each
depth level. It is important to note that half of the deeper depth levels occupy
73.4% of the parameters. This is because the layers at coarser levels tend to have
more channels, which contributes to an increase in the number of parameters.
This tendency enhances the effectiveness of the depth-skip compression method
in reducing the number of parameters, as our approach begins by discarding the
coarsest layers first.
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Table S7: Parameter number and latency for each depth level to Stable Diffusion
(version 1). Half of the deeper depth levels occupy 73.4% of the parameters.

Depth Parameter Sum Latency Sum
D01 0.69% 0.70% 5.09% 5.09%
D02 1.25% 1.95% 10.65% 15.74%
D03 1.37% 3.32% 10.77% 26.51%
D04 2.85% 6.17% 8.57% 35.08%
D05 4.39% 10.56% 13.03% 48.10%
D06 5.06% 15.62% 13.06% 61.16%
D07 10.98% 26.60% 5.06% 66.22%
D08 16.71% 43.31% 10.49% 76.70%
D09 17.47% 60.78% 9.22% 85.93%
D10 9.17% 69.95% 1.88% 87.80%
D11 9.37% 79.32% 2.76% 90.56%
D12 9.37% 88.68% 2.70% 93.26%
D13 11.32% 100.0% 6.74% 100.00%

S8 Challenge of Step Distillation in Image Restoration

Step distillation [9,12,15,16,19,20] is an acceleration technique capable of more
aggressively speeding up diffusion models compared to our method, potentially
reducing the diffusion process to only one or two iterations. Thus, one may want
to adopt step distillation to a downstream task such as image restoration. How-
ever, unlike our training-free acceleration method, step distillation techniques
are not suited for image restoration tasks. In this section, we analyze the the
reason behind such incompatibility of step distillation, contrasting it with the
effectiveness of our time-step optimization.

Step distillation methods alter the objective of diffusion models from func-
tioning as progressive denoisers to simply approximating the posterior mean.
This transformation compels diffusion models to adhere to the deterministic
process for sampling. However, this deterministic sampling in image restoration
results in artifact-prone outcomes. Fig. S6 exemplifies this issue, where (a-c) and
(e-g) illustrate restoration results across various models, such as StableSR [23],
DiffBIR [11], and LDM [18], with 100 steps using the stochastic and deterministic
processes of DDIM [21], respectively. While the stochastic sampling consistently
yields higher-quality outputs, the deterministic process frequently results in ar-
tifacts, including unnatural textures and noisy high-frequency details. This issue
is inevitably reproduced in step-distilled models, as shown in Fig. S6 (h), since
they should use the deterministic sampling process. In contrast, our time-step
optimization adopts a training-free acceleration approach, ensuring broad com-
patibility with downstream applications by preserving the original models and
their sampling processes, as shown in Fig. S6 (d).

A main reason of the failure of the deterministic sampling may be attributed
to the local optimum problem. Specifically, the output of diffusion models repre-
sents the gradient of the data distribution at a time step, denoted as ∇x log pt(x) [22].
Stochastic sampling employs this gradient in an iterative process that subtracts
the gradient while simultaneously introducing random noise. This process can
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(g) LDM (100 steps)(e) StableSR (100 steps) (f) DiffBIR (100 steps) (h) LDM (1 step)
w/ step distillation
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w/ time-step optimization
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Fig. S6: Super-resolution outcomes using various configurations. Top and bottom row
are outcomes using stochastic and deterministic sampling, respectively. (d) is a sam-
pling result using our time-step optimization. (h) is a sampling result after applying a
step distillation method [19].

Table S8: Latency and MACs [26] improvement after depth-skip. We measure the
latencies and computational costs with 50 iterations for IP2P [2] and StableSR [23],
and 20 iterations for ControlNet [24].

InstructPix2Pix [2] StableSR [23] ControlNet [24]
Time(s) MACs(T) Time(s) MACs(T) Time(s) MACs(T)

Original 6.312 50.81 2.807 18.75 1.572 18.21
D9 5.978 47.27 2.421 17.49 1.444 17.26
D8 5.685 41.75 2.204 15.57 1.372 15.79

be interpreted as gradient descent with simulated annealing, facilitating a more
comprehensive exploration of the solution space. Meanwhile, the deterministic
process removes the stochastic component, functioning akin to the pure gradi-
ent decent method. This modification suggests that without stochastic perturba-
tions, there is an elevated risk becoming trapped in local optima with unnatural
textures.

S9 Latency & Computational Cost Analysis

Tab. S8 reports the reduction of latencies and computational costs achieved by
applying depth-skip pruning. The table shows that depth-skip pruning reduces
the latency and computation of 5.3% and 7.0% for IP2P [2], 21.5% and 17.0%
for StableSR [23], and 8.2% and 5.2% for ControlNet [24], respectively.
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Table S9: Quantitative comparisons of time-step optimization using multistep DPM-
Solver++ [14] schedular. The evaluation protocol is same as the one used in Tab. 3 in
the main paper.

InstructPix2Pix StableSR
# Steps Ours AutoDiffusion Ours AutoDiffusion

PSNR 5 20.54 18.73 27.41 26.79
(dB) 10 26.82 24.33 32.09 30.58

S10 Time-step optimization using different scheduler

Although we evaluated our time-step optimization using DDIM sampler in the
main paper, our method can be applied to other schedulers as well, since the
optimization process imposes no constraints, such as differentiability. Also, it
is still effective in other schedulers, such as multistep DPM-Solver++ [14], as
demonstrated in S9.
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(a) Input (b) Original (c) D8 (d) D8 + optimized 20 step

Fig. S7: Additional qualitative results from StableSR [23]. (c) shows the outputs after
applying depth-skip compression at D8 with 50 steps. (d) displays the outcomes that
combine depth-skip and time-step optimization.
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