
Match me if you can: Semi-Supervised Semantic
Correspondence Learning with Unpaired Images

– Appendix –

In this appendix, we provide additional information that complements the ma-
terials in our main paper and various aspects of our research. Specifically, we
include the following items:

– Novel Robustness Evaluation Benchmark. We introduce a new ro-
bustness benchmark for semantic correspondence (dubbed SPair-C). To
our knowledge, this is the first benchmark for evaluating the robustness of
semantic correspondence learning methods.

– Further Analyses. We present an ablation study and further analyses to
understand the effectiveness of our method.

– Further Training Details. We present further training details that elab-
orate on our method of leveraging unlabeled data to boost performance.

– Visualizations. We showcase qualitative results by comparing our method
with state-of-the-art methods.

A Robustness Evaluation Benchmark

We introduce a new corruption benchmark to verify the robustness of dense
correspondence learning methods. This benchmark is dubbed SPair-C (i.e., a
corrupted SPair-71k [9]), which was mentioned in the Robustness evaluation
section of the main paper. Its purpose is to complement the existing dense cor-
respondence learning task by providing a more challenging dataset for evaluating
the robustness of models.
Dataset details. Since hardly corrupted or noise-injected images have been
used to evaluate dense correspondence learning, we construct a new corrup-
tion robustness benchmark for semantic correspondence following the existing
regime [5]. The future applicability of a model can be determined by evaluating
its robustness against corrupted images involving frequently observed corruption
occurring in the wild.

Fig. A shows 15 types of corruptions in the SPair-C dataset, selected among
corruptions [5] used for measuring robustness. We choose appropriate corrup-
tions for pixel-level prediction from noise, blurred weather, and digital cate-
gories, which do not affect significant point changes after corruptions. The final-
ized categories are noise (Gaussian, shot, impulse, and speckle), blur (defocus
and Gaussian), weather (snow, frost, fog, and spatter), and digital categories
(brightness, contrast, saturate, pixelated, and JPEG). We apply the five levels
of the severity s per each type of corruption exemplified in Fig. B. Therefore, a
set of 75 common visual corruptions, which enable models to be fooled by small
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Fig.A: Visualization of corrupted images in SPair-C. The corrupted images
of one sample consist of types of algorithmically generated corruptions from noise,
blur, weather, and digital categories. Each type of corruption has five levels of severity,
resulting in 75 distinct corruptions.
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Fig. B: Corrupted images with different severities. We visualize a chosen image
from SPair-71k [9] with severity from 1 to 5. The images get noisier as the severity
increases.

changes in the original image, are used for one test image. We use the codebase1

to build the benchmark.

B Further Analyses

In this section, we first ablate our model regarding the confidence threshold.
Then, we analyze PCK concerning the tolerance threshold α. Finally, We exam-
ine our proposed method MatchMe by training it, varying the ratio of unlabeled
images to labeled training images.
Ablation study on confidence threshold. The confidence threshold τ in
Eq.(8) is a critical hyper-parameter that determines the quantity and quality
of machine-annotated data used for training. To investigate the relationship be-
tween the confidence threshold and model performance, we conduct an ablation
study with the threshold at intervals of 0.2 across a wide range of confidence
thresholds from 0.1 to 0.9. We use CATs [1] for this study.

As shown in Tab. A, while the threshold value of 0.7 produces the highest
PCK value, other values do not significantly degrade performance and still pro-
duce higher PCK values than the baseline’s PCK 49.9, which do not use our
method. The PCK trend suggests that the quantity of machine-annotated data
1 https://github.com/hendrycks/robustness

https://github.com/hendrycks/robustness
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Table A: Impact of machine-annotated data. We study the sensitivity of PCK as
the quantity and quality of machine-annotated data change by the confidence threshold
τ . We adjust τ from 0.1 to 0.9 and confirm how PCK changes. CATs [1] is used for this
study. We observe the model can yield the maximal PCK with the tuned τ but shows
insensitive PCKs to τ .

Confidence threshold PCK(τ)

0.1 52.7
0.3 52.6
0.5 52.6
0.7 53.0
0.9 52.3

Table B: PCK comparison with state-the-art methods under varying tol-
erance (α). We report PCK for different α of the state-of-the-art methods on SPair-
71k [9]. Numbers in bold denote the best. MatchMe outperforms all the methods by a
large margin.

α 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

CATs [1] 1.93 7.0 13.8 20.9 27.7 33.6 38.6 43.0 46.8 49.9
CATs++ [1] 4.3 14.6 25.0 33.9 40.8 46.4 50.8 54.3 57.3 59.8

SemiMatch [7] 2.1 7.7 15.0 22.4 29.0 34.8 39.7 43.9 47.6 50.7
SCORRSAN [6] 3.6 12.1 21.3 29.3 35.8 41.0 45.2 48.8 51.7 55.3

MatchMe (ours) 6.1 18.5 29.9 38.6 45.1 50.0 53.9 57.0 59.7 62.0

is more critical than its quality, as demonstrated by the lower PCK value at the
higher confidence threshold (e.g., τ = 0.9) compared to that at the lower thresh-
old (e.g., τ ≤ 0.3). Moreover, the low sensitivity to threshold values suggests
that our novel data itself contributes to improving model performance.
PCK analysis. We report PCK results with the various tolerance thresholds
from 0.1 to 0.01 on SPair-71k in comparison between ours and the competitive
baselines [2, 3, 6, 7] in Tab. B. The results demonstrate that our expanded key-
point correspondences, amplified at both pixel-level and image-level, enable the
trained model to more accurately estimate the correspondences, as evidenced
by the significant PCK gaps with much stricter tolerance criteria (smaller α
values), compared to other methods. Moreover, the results show that as the tol-
erance threshold of PCK (α) decreases, the gap with the baseline [2] does not
narrow but widens. For example, at α = 0.1, the performance gap is 2.2, but at
α = 0.05, it is 4.3, showing a gap approximately twice as large. Therefore, this
demonstrates that our predicted point correspondences closely approximate the
GT point correspondences.
Analysis on using labeled/unlabeled data. We conduct further experiments
by varying the ratios of unlabeled and existing labeled training data ratios.
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Table C: PCK of MatchMe trained with a varying fraction of labeled images.
We observe that MatchMe is not heavily dependent on a large fraction of labeled images.
It achieves high PCK even when trained with only 20% labeled data from the entire
labeled images, which amounts to approximately 0.04% of the unlabeled data.

PCK with fraction of labeled data (baseline: 49.9)

0.2 0.4 0.6 0.8 1.0

50.2 (+0.3) 50.5 (+0.5) 50.7 (+0.8) 51.1 (+1.2) 52.0 (+2.1)

We aim to determine the necessary amount of labeled data for performance
and understand the dependency on labeled data. Table. C offers the following
observations: 1) the minimum amount of labeled data required is quite low, and
2) there is a low reliance on labeled data. For example, when using 20% images
of the entire labeled data, which corresponds to approximately 0.04% of the
unlabeled data, MatchMe outperforms the baseline (i.e., 49.9), trained with the
whole labeled data in a supervised manner, on SPair-71k.

C Further Details on Training

Unlabeled images for training We use the labeled data in the training set
of SPair-71k [9] along with the unlabeled data in PASCAL VOC 2012 [4], which
is the source of the SPair-71k. We assign images for each object class according
to the corresponding classification labels. Only non-overlapping images in the
validation and test set of SPair-71k are used for training to avoid cheating.
Furthermore, images in the ’dining table’ and ’sofa’ classes are not included in
the same way that the dining table and sofa categories are not used as in SPair-
71k. Since SPair-71k was built to have similar numbers of labeled data for each
class, we balance the number of unlabeled data for each class to ensure that
their distribution matches that of the labeled data. We use different batches of
unlabeled data in every iteration to diversify the training sample.

D Visualizations

Handling unseen data. We qualitatively verify the generalizability of our
method by examining the labels generated by MatchMe for newly captured data
from the ImageNet dataset [10], which were not included in our training dataset.
As shown in Fig. C, our model produces high-quality correspondences for both
data from known classes (e.g., Cat) and even previously unseen classes (e.g.,
Hen). This demonstrates the high potential to extend our method by incor-
porating newly captured data into the existing unlabeled data for training or
evaluation.
Comparison with State-of-the-arts. Alongside the qualitative results shown
in Fig.3 in the main paper, we offer further visualizations of example pairs with
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Fig. C: Qualitative example of handling unseen images. We demonstrate the
applicability of MatchMe using newly acquired data beyond the training dataset. This
includes images for both existing and unseen classes, with the images sourced from
ImageNet [10]. The top two images display matching results for cat images, while the
bottom images feature the unseen class, Hen. The results indicate the strong applica-
bility of our method, as evidenced by the high accuracy of the correspondence in both
cases.

(a) CATs (b) SemiMatch (c) SCORRSAN (d) CATs++ (e) MatchMe

Fig.D: Qualitative results on SPair-71k in comparison with SOTA methods
(cont’d) The point-to-point matches are drawn by linking key point pairs with line
segments. Green and red lines denote correct and incorrect predictions with respect
to the ground-truth pairs, respectively. We observe that ours performs much better
compared with the counterparts across all the sample image pairs.

their predicted matches for MatchMe and the highly competitive methods in
both the supervised and semi-supervised regimes: CATs [1], CATs++ [2], Semi-
Match [7], SCORRSAN [6]. As shown in Fig. D, our approach produces more
accurate estimations of correspondences between image pairs across various ob-
ject classes and differences in variation factors compared with other methods.
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(a) CATs++
(Baseline)

(b) (a) +
CNNGeoU

(c) (a) +
PWarpC

(d) (a) +
SCORRSAN

(e) (a)+ MatchMe
(Ours)

Fig. E: Qualitative results on SPair-71k [9] in comparison with other semi-
supervised methods: For a fair comparison, we use (a) the fixed baseline CATs++ [2]
for all semi-supervised methods, (b) + CNNGeoU [8], (c) + PWarpC [11], (d) +
SCORRSAN [6], and (e) + MatchMe. The point-to-point matches are drawn by linking
key point pairs with line segments. Green and red lines denote correct and incorrect
predictions with respect to the ground-truth pairs, respectively. We observe that ours
performs much better compared with the counterparts across all the sample image
pairs.

Comparison with semi-supervised methods. We show qualitative results
to complement the aspect of the controlled experiments for the learning methods
section of the main paper. For a fair comparison, all methods are trained under
the same network architecture, suggested in CATs++ [2]. As shown in Fig. E,
we predict correct correspondences, even in challenging samples that exhibit
significant differences in scale and viewpoint between image pairs, unlike other
methods, which tend to produce incorrect predictions for such samples.
Qualitative PCK analysis. In addition to quantifying model performance
through the analysis of PCK values, we demonstrate the superiority of our
method by visualizing its predictive quality in Fig. F and Fig. G. We compare
the differences between the correctly predicted and the ground truth (GT) point
correspondences at α = 0.1, as indicated by yellow and green colors, respec-
tively. This visualization illustrates how many more points our model predicts
correctly as well as how closely our model’s predictions align with the correct GT
key points, even at the extreme points compared to the baseline [2]. Specifically,
the example of the sheep class, having the most minor categorical PCK differ-
ence compared to the baseline, illustrates that, even though the PCK achieved
by our method is similar to that of the baseline, the quality of the predicted
correspondence is superior. This outstanding performance can be attributed to
the fact that our method generates machine-annotated point correspondences,
providing diverse and rare supervisions that are difficult to obtain through the
limited amount of manually annotated GT key points.
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(a) Baseline (b) MatchMe

Fig. F: Visualization of the difference between correctly predicted points
and ground truth (GT) points on SPair-71k. The GT points in the left images
corresponding to the GT points in the right images for each image pair are marked in
green lines, and the predicted point correspondences are marked in yellow lines. The
closer the predicted correspondence to the GT correspondence is, the more accurate
the prediction. Notice that if only the green line is visible, the predicted and GT point
correspondences are perfectly matched.
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(a) Baseline (b) MatchMe

Fig.G: Visualization of the difference between correctly predicted points
and ground truth (GT) points on SPair-71k (cont’d). The GT points in the
left images corresponding to the GT points in the right images for each image pair are
marked in green lines, and the predicted point correspondences are marked in yellow
lines. The closer the predicted correspondence to the GT correspondence is, the more
accurate the prediction. Notice that if only the green line is visible, the predicted and
GT point correspondences are perfectly matched.



MatchMe 9

References

1. Cho, S., Hong, S., Jeon, S., Lee, Y., Sohn, K., Kim, S.: Semantic correspondence
with transformers. arXiv preprint arXiv:2106.02520 (2021) 2, 3, 5

2. Cho, S., Hong, S., Kim, S.: Cats++: Boosting cost aggregation with convolutions
and transformers. arXiv preprint arXiv:2202.06817 (2022) 3, 5, 6

3. Coates, A., Ng, A., Lee, H.: An analysis of single-layer networks in unsupervised
feature learning. In: AISTATS (2011) 3

4. Everingham, M., Eslami, S.A., Van Gool, L., Williams, C.K., Winn, J., Zisserman,
A.: The pascal visual object classes challenge: A retrospective. International journal
of computer vision 111(1), 98–136 (2015) 4

5. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common
corruptions and perturbations. arXiv preprint arXiv:1903.12261 (2019) 1

6. Huang, S., Yang, L., He, B., Zhang, S., He, X., Shrivastava, A.: Learning semantic
correspondence with sparse annotations. In: Computer Vision–ECCV 2022: 17th
European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part
XIV. pp. 267–284. Springer (2022) 3, 5, 6

7. Kim, J., Ryoo, K., Seo, J., Lee, G., Kim, D., Cho, H., Kim, S.: Semi-supervised
learning of semantic correspondence with pseudo-labels. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 19699–
19709 (2022) 3, 5

8. Laskar, Z., Kannala, J.: Semi-supervised semantic matching. In: Proceedings of the
European Conference on Computer Vision (ECCV) Workshops. pp. 0–0 (2018) 6

9. Min, J., Lee, J., Ponce, J., Cho, M.: Spair-71k: A large-scale benchmark for se-
mantic correspondence. arXiv preprint arXiv:1908.10543 (2019) 1, 2, 3, 4, 6

10. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recog-
nition challenge. IJCV (2015) 4, 5

11. Truong, P., Danelljan, M., Yu, F., Van Gool, L.: Probabilistic warp consistency
for weakly-supervised semantic correspondences. arXiv preprint arXiv:2203.04279
(2022) 6


	Match me if you can: Semi-Supervised Semantic Correspondence Learning with Unpaired Images  – Appendix –

