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1 Network architecture used in FedRepOpt
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Fig. 1: Network architecture of the Fed-RepGhost-Tr (Left), Fed-CSLA-Ghost (Mid-
dle) and Fed-RepGhost-Inf / FedRepOpt-Ghost (Right) [1]. SE: Squeeze-and-
excitation networks |3]. SBlock: Shortcut block [1]. SL with dotted line: Constant
scaling layer [2]. SL: Trainable scaling layer |2|. DW-Conv: Depth-wise convolution.
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In our proposed FedRepOpt FL framework, we consider two architectures
(i.e., RepGhostNet and VGG-style) proposed in the original work on RepOpt [2].
Figure [I] demonstrates the block design of the Fed-RepGhost-Tr, Fed-CSLA-
Ghost, and Fed-RepGhost-Inf/FedRepOpt-Ghost in our experiments. More pre-
cisely, Fed-RepGhost-Tr contains a parallel fusion layer (i.e., batch normalization
(BN) layer), while the Fed-CSLA-Ghost replaces the BN layer with a trainable
linear scaling layer. To follow the assumption in |2|, where each branch only
contains a linear trainable operator, the BN layer followed by the 3 x 3 depth-
wise convolution is replaced by a constant scaling layer. Fed-RepGhost-Inf and
FedRepOpt-Ghost follow the same structure mentioned in |2] that removes the
parallel fusion BN layer in Fed-RepGhost-Tr. The other architecture used in our
experiment is VGG-style, as shown in Figure [2} Similar to Fed-RepGhost-Tr,
Fed-RepVGG-Tr contains a 1 x 1 and a BN branch in parallel. Fed-CSLA-VGG
replaces the batch normalization layer with trainable/constant linear scaling
layers. Fed-RepVGG-Inf and FedRepOpt-VGG are simplified versions of Fed-
RepGhost-Tr without any multi-branch.
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Fig. 2: Network architecture of the Fed-RepVGG-Tr (Left), Fed-CSLA-VGG (Middle)
and Fed-RepVGG-Inf / FedRepOpt-VGG (Right) [2|. SL with dotted line: Constant
scaling layer. SL: Trainable scaling layer.
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