
OTJR 1

Appendix
A Threat Model and Adversarial Sample

In this section, we summarize essential terminologies of adversarial settings re-
lated to our work. We first define a threat model, which consists of a set of
assumptions about the adversary. Then, we describe the generation mechanism
of adversarial samples in AT frameworks for the threat model defending against
adversarial attacks.

A.1 Threat Model

Adversarial perturbation was firstly discovered by [9], and it instantly strikes
an array of studies in both adversarial attack and adversarial robustness. [7]
specifies a threat model for evaluating a defense method including a set of as-
sumptions about the adversary’s goals, capabilities, and knowledge, which are
briefly delineated as follows:

– Adversary’s goals could be either simply deceiving a model to make the
wrong prediction to any classes from a perturbed input or making the model
misclassify a specific class to an intended class. They are known as untargeted
and targeted modes, respectively.

– Adversary’s capabilities define reasonable constraints imposed on the at-
tackers. For instance, a Lp certified robust model is determined with the
worst-case loss function L for a given perturbation budget ϵ:

E(x,y)∼D

[
max

x̃∈Bp(x,ϵ)
L(f(x̃), y)

]
, (13)

where Bp(x, ϵ) = {u ∈ RI : ||u− x||p ≤ ϵ}.
– Adversary’s knowledge indicates what knowledge of the threat model that

an attacker is assumed to have. Typically, white-box and black-box attacks
are two most popular scenarios studied. The white-box settings assume that
attackers have full knowledge of the model’s parameters and its defensive
scheme. In contrast, the black-box settings have varying degrees of access to
the model’s parameter or the defense.

Bearing these assumptions about the adversary, we describe how a defense
model generates adversarial samples for its training in the following section.

A.2 Adversarial Sample in AT

Among multiple attempts to defend against adversarial perturbed samples, ad-
versarial training (AT) is known as the most successful defense method. In fact,
AT is an data-augmenting training method that originates from the work of [20],

2 Binh M. Le et al.

where crafted adversarial samples are created by the fast gradient sign method
(FGSM), and mixed into the mini-batch training data. Subsequently, a wide
range of studies focus on developing powerful attacks [8, 11, 16, 24]. Meanwhile,
in the opposite direction to the adversarial attack, there are also several attempts
to resist against adversarial examples [22, 35, 40]. In general, a defense model is
optimized by solving a minimax problem:

min
θ

[
max

x̃∈Bp(x,ϵ)
LXE(x̃, y; θ)

]
, (14)

where the inner maximization tries to successfully create perturbation samples
subjected to an ϵ-radius ball B around the clean sample x in Lp space. The
outer minimization tries to adjust the model’s parameters to minimize the loss
caused by the inner attacks. Among existing defensive AT, PGD-AT [26] becomes
the most popular one, in which the inner maximization is approximated by the
multi-step projected gradient (PGD) method:

x̃t+1 = Πϵ
x(x̃t + η · sgn(∇x̃tL(x̃t, y))), (15)

where Πϵ
x is an operator that projects its input into the feasible region B∞(x, ϵ),

and η ∈ R is called step size. The loss function in Eq. 15 can be modulated to
derive different variants of generation mechanism for adversarial samples in AT.
For example, Zhang et al. [41] utilizes the loss between the likelihood of clean
and adversarial samples for updating the adversarial samples. In our work, we
use Eq. 15 as our generation mechanism for our AT framework.

B Training Algorithm for OTJR

Our end-to-end algorithm for optimizing Eq. 12 is provided in Algorithm 1.
As mentioned, in practice, deep learning libraries allow for the simultaneous
sampling of K uniform vectors, denoted as v̂k. Consequently, the computation
of random projections and the determination of optimal movement steps can be
effectively vectorized and executed concurrently.

C Sanity Tests

The phenomenon of gradient obfuscation arises, when a defense method is tai-
lored such that its gradients prove ineffective for generating adversarial sam-
ples [2]. However, the method designed in that manner can be an incomplete
defense to adversarial examples [2]. Adhering to guidelines from [7], we eval-
uate our pre-trained model on CIFAR10 with WRN34 to affirm our proposed
OTJR does not lean on gradient obfuscation. As detailed in Table 9, iterative
attacks are strictly more powerful than single-step attacks, whereas when in-
creasing perturbation budget ϵ can also raise attack successful rate. Finally, the
PGD attack attains a 100% success rate when ϵ = 128/255.

OTJR 3

Algorithm 1 OTJR: AT with SW and optimal Jacobian regularization
Require: DNN f parameterized by θ, training dataset D. Number of projection K.

Maximum perturbation ϵ, step size η, number of adversarial iteration P . Loss’
hyper-parameters λJ and λSW . Learning rate α and a mini-batch size of B.

1: while not converged do
2: for {(xi, yi)}B ∈ D do
3: ν := zi = fθ(xi)|i=1,..,B ▷ forward a batch of clean samples through the

model
4: for iteration t← 1 to P do
5: x̃i = Πϵ

x(x̃i + η · sgn(∇x̃iL(x̃i, yi)))|i=1,..,B ▷ generate adv. samples by
L∞-PGD in P iterations

6: end for
7: µ := z̃i = fθ(x̃i)|i=1,..,B ▷ forward a batch of adv. samples through the

model
8: SW ← 0 ▷ initialize SW loss
9: σi ← 0|i=1,..,B ▷ initialize B Jacobian projections

10: for iteration k ← 1 to K do
11: v̂k ← U(SC−1) ▷ uniformly sample v̂k from SC−1

12: SW ← SW + ψ (τ1 ◦ Rv̂kµ, τ2 ◦ Rv̂kν) ▷ add SW under projection v̂k
13: mk ←

(
τ−1
1 ◦ τ2 ◦ Rv̂kν −Rv̂kµ

)
⊗ v̂k ▷ calculate samples’ movements

under v̂k
14: σi ← σi +mk,i|i=1,..,B
15: end for
16: σi ← σi/||σi||2 |i=1,..,B
17: L ←

∑B (
LXE(x̃i, yi) + λJ ||J(xi|σi)||2F

)
+ λSWSW (µ, ν) ▷ overall loss

18: θ ← θ − α · ∇θL ▷ update model’s parameters θ
19: end for
20: end while

Table 9: Basic sanity tests for our OTJR method with white-box PGD attack.

Number of step
Clean 1 10 20 40 50

84.01 .53 78.86.69 56.26.24 55.38.29 55.1.40 55.08.40

Perturbation budget ϵ w/ PGD-20
Clean 8/255 16/255 24/255 64/255 128/255

84.01 .53 55.38.29 24.571.00 9.66.54 0.57.01 0.00.01

D Hyper-parameter sensitivity

In Table 10, we present ablation studies focusing on hyper-parameter sensitivi-
ties, namely, λJ , λSW , and K, using the CIFAR-10 dataset and WRN34 architec-
ture. We observe that excessive λJ values compromise accuracy and robustness,
a result of the loss function gradients inducing adversarial perturbations during
the AT step. While λSW offers flexibility in selection, models with minimal λSW

values inadequately address adversarial samples, and high values risk eroding

4 Binh M. Le et al.

clean accuracy. For the slice count K, a lower count fails to encapsulate trans-
portation costs across latent space distributions; conversely, an overly large K
brings marginal benefits at the expense of extended training times. We acknowl-
edge potential gains from further hyper-parameter optimization.

E Training Time

Table 11 indicates the average training time per epoch of all AT methods on
our machine architecture using WRN34 model on CIFAR-100 dataset. Notably,
although the SAT algorithm demonstrates a commendable per-epoch training
duration, its convergence necessitates up to four times more epochs than alterna-
tive methods, especially on large scale datasets such as CIFAR-100. Despite our
method delivering notable enhancements over prior state-of-the-art frameworks,
its computational demand during training remains within acceptable bounds.

Table 10: Hyper-parameter tuning. The sensitivities of hyper-parameters: λJ ,
λSW and K. Without Jacobian regularization, the model cannot achieve the best per-
formance. Trade-off between model’s accuracy vs. robustness is shown via λSW .

Hyper-parameters Robustness

λJ λSW K Clean PGD20 PGD100 AutoAttack
0.002 64 32 84.53 55.07 54.69 52.41
0.01 64 32 84.75 54.37 54.06 52.13
0.05 64 32 82.82 54.98 54.72 52.00

0.002 32 32 85.47 54.85 54.46 52.23
0.002 72 32 83.19 55.70 55.40 53.04

0.002 64 16 81.47 55.10 54.98 51.82
0.002 64 64 85.79 53.80 53.36 51.83

Table 11: Training time per epoch of AT methods. Even though our method’s
training time/epoch is slightly slower than the SAT’s as the additional Jacobian regu-
larization, it can achieve faster convergence on large-scale datasets.

Method Time (mins) Method Time (mins)
XE 1.63.00 PGD-AT 12.32.03

ALP 13.56.03 TRADES 16.42.06

SAT 14.68.01 OTJR (Ours) 18.02.12

OTJR 5

(a) XE (b) TRADES

(c) ALP (d) PGD-AT

(e) SAT (f) OTJR (Ours)

Fig. 8: Magnitude of activation at the penultimate layer for models trained with
different defense methods. Our OTJR can regulate adversarial samples’ magnitudes
similar to clean samples’ while well suppressing both of them.

F Activation Magnitude

Figure 8 depicts the activation magnitudes at the penultimate layer of WRN34
across various AT frameworks. Although AT methods manage to bring the ad-
versarial magnitudes closer to their clean counterparts, the magnitudes generally
remain elevated, with PGD-AT being especially prominent. Through a balanced
integration of the input Jacobian matrix and output distributions, our proposed
method effectively mitigates the model’s susceptibility to perturbed samples.

6 Binh M. Le et al.

G Broader Impact

Utilizing machine learning models in real-world systems necessitates not only
high accuracy but also robustness across diverse environmental scenarios. The
central motivation of this study is to devise a training framework that augments
the robustness of Deep Neural Network (DNN) models in the face of various ad-
versarial attacks, encompassing both white-box and black-box methodologies. To
realize this objective, we introduce the OTJR framework, an innovative approach
that refines traditional Jacobian regularization techniques and aligns output dis-
tributions. This research represents a significant stride in synergizing adversarial
training with input-output Jacobian regularization—a combination hitherto un-
derexplored—to construct a more resilient model.

