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A Dataset Details

For both Human3.6M [2] and Panoptic [4] datasets, we select longer data in-
tervals for computational efficiency. This decision is due to the higher compu-
tational intensity and time required for 2D pose estimation, which processes
image inputs, compared to training 3D lifting networks with 2D poses. In Hu-
man3.6M, every 40th frame is used for training and every 100th frame for test-
ing. In Panoptic, every 15th frame is used for both training and testing. The
Panoptic dataset training scenarios include “171204_pose1”, “171204_pose2”,
‘171204_pose3”, “171026_pose1”, “171026_pose2”, “171026_cello3”, “161029_pi-
ano3”, “1161029_piano4”, and “170407_office2’. Testing scenarios include “171026-
_pose3”, “161029_piano2”, and “170915_office1”.

B Additional Quantitative Results

B.1 Detailed Result of Single-Model Training Method

In this section, we present detailed results on the Human 3.6M dataset, showcas-
ing the action-specific Mean Per Joint Position Error (MPJPE) for various 2D
pose detectors and 3D lifting networks, as illustrated in Tab. 1. Our single-model
training method generally improves 3D lifting performance for most actions and
across all 2D pose detectors and 3D lifting networks. This comprehensive anal-
ysis underscores the efficacy of our 3D-guided training method in enhancing
performance across various actions in 3D HPE tasks.

B.2 Evaluation for 2D Human Pose Estimation

Our training method primarily aims to improve 3D lifting performance by en-
hancing 2D pose detector training, focusing on reducing MPJPE. Interestingly,
we also observed improvements in 2D pose accuracy. We use the Percentage of
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Table 1: Detailed quantitative comparison results of our single-model 3D-guided train-
ing method on Human3.6M [2] in millimeters under MPJPE (mm). FT-2D represents
results from traditional 2D pose detector training, while GT denotes 3D lifting using
GT 2D poses. Ours represents results from our proposed 3D-guided training method.
Lower is better, with the best results highlighted in bold.

2D input LiftNet. Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.
SB 45.6 54.0 49.8 53.6 58.4 64.2 50.4 47.9 62.5 76.0 53.7 54.8 57.2 43.8 47.7 55.1
IGANet 47.9 56.0 48.6 53.7 56.7 61.7 53.0 47.5 61.0 76.0 55.3 55.3 56.2 46.3 48.2 55.3
VPose 48.1 54.7 48.5 55.0 57.3 61.2 51.4 48.9 60.2 75.3 53.7 53.2 56.5 45.0 48.3 54.8

HRNet
(FT-2D)

MixSTE 54.1 61.4 52.3 59.4 60.8 63.3 60.0 52.1 63.8 77.2 58.1 60.2 56.6 51.7 51.1 59.3
SB 43.9 50.5 48.1 51.4 56.6 61.7 49.5 49.3 60.5 73.7 52.0 50.6 53.9 42.1 44.9 52.9
IGANet 47.2 55.0 48.0 53.8 54.5 61.7 50.3 49.5 60.0 77.4 54.7 52.0 54.6 44.2 47.5 54.4
VPose 45.1 52.2 47.0 51.5 55.6 57.9 48.9 48.0 58.7 75.3 52.2 49.4 53.9 41.7 44.5 52.5

HRNet
(Ours)

MixSTE 52.1 55.9 51.6 56.6 57.4 63.4 56.1 54.1 62.3 74.3 56.8 53.8 56.7 49.7 51.6 56.9

SB 43.0 51.5 49.6 54.2 56.7 61.7 47.2 47.1 64.5 79.1 52.8 56.7 55.7 39.9 42.8 54.0
IGANet 43.3 52.0 48.3 53.9 53.6 58.3 47.2 45.9 61.9 77.5 53.0 56.3 52.2 38.9 41.2 52.8
VPose 44.7 51.9 47.8 55.3 56.0 59.1 46.8 47.6 61.8 77.9 52.7 55.3 54.8 40.2 43.4 53.5

RTMPose
(FT-2D)

MixSTE 45.9 54.9 52.9 55.9 55.6 59.8 50.7 48.5 64.0 78.4 55.4 59.5 52.8 42.4 42.9 55.3
SB 41.0 48.9 46.6 52.6 52.9 57.9 46.1 45.1 61.2 78.5 51.2 53.7 51.9 38.9 41.4 51.6
IGANet 40.1 48.5 44.1 51.3 48.6 54.6 45.2 42.2 58.9 77.0 50.1 53.0 48.0 37.0 39.5 49.7
VPose 43.1 49.7 44.6 54.0 52.1 56.1 46.8 44.8 58.5 76.3 49.9 52.4 51.2 38.0 42.5 51.0

RTMPose
(Ours)

MixSTE 42.2 50.2 47.5 53.4 50.4 54.3 46.7 45.0 59.7 77.6 50.0 54.4 49.4 39.9 41.0 51.2

SB 43.7 52.2 49.2 56.6 56.4 62.3 48.1 47.8 64.0 86.6 53.6 56.4 55.5 40.4 45.2 54.9
IGANet 44.8 52.8 46.9 56.1 52.8 59.5 47.9 45.8 62.5 86.4 53.1 56.7 52.4 39.7 44.1 53.9
VPose 46.7 52.6 47.8 57.8 55.6 60.1 47.7 48.6 61.6 88.4 53.1 55.4 54.9 41.4 47.2 54.9

DWPose
(FT-2D)

MixSTE 47.4 56.8 50.6 58.5 56.1 62.4 52.6 50.3 62.8 88.5 56.5 60.3 53.4 43.6 45.9 56.8
SB 42.5 50.7 47.8 54.5 53.7 61.2 47.1 45.9 61.4 83.0 52.0 56.7 52.9 38.8 42.9 53.1
IGANet 43.8 50.3 44.7 54.8 51.5 59.0 47.5 43.6 59.9 78.3 51.4 54.4 50.5 39.8 43.0 51.9
VPose 45.3 50.8 45.3 56.4 53.3 59.0 47.3 45.6 59.1 80.4 51.2 54.8 52.7 39.8 44.5 52.7

DWPose
(Ours)

MixSTE 43.3 49.9 48.6 54.5 52.9 56.3 46.8 44.9 59.9 83.4 52.0 55.0 50.9 41.6 43.4 52.6

SB 34.7 40.5 36.5 40.3 42.1 49.5 42.4 38.4 48.6 52.6 41.3 42.0 42.3 32.3 34.6 41.4
IGANet 30.4 35.1 30.9 33.4 35.1 41.6 36.6 30.9 40.3 42.4 35.4 36.7 35.8 28.1 29.2 35.0
VPose 35.8 40.1 35.5 39.6 39.8 43.7 42.1 38.7 45.8 48.8 39.3 40.6 41.1 31.8 34.3 39.9GT

MixSTE 35.5 40.7 33.5 38.8 37.5 42.0 42.6 37.1 40.4 43.3 37.1 41.6 38.4 30.8 32.7 38.3

Table 2: Quantitative comparison results using our multi-model 3D-guided training
method on Human3.6M and Panoptic under PCK (%) and MPJPE (mm). We train
each 2D pose detector using four 3D lifting networks [6,7,9,11] and report the average
results across each network. The ↑ indicates that the higher values are better, while
the ↓ indicates that lower values are better.

Human3.6M Panoptic
2D Detector Method PCK@0.2 ↑ MPJPE ↓ PCK@0.2 ↑ MPJPE ↓

FT-2D 94.93 56.13 94.32 49.83HRNet Ours 94.82 54.50 94.34 45.80
FT-2D 95.07 53.90 93.70 56.20RTMPose Ours 95.22 50.58 94.50 45.75
FT-2D 95.01 55.13 93.05 57.23DWPose Ours 95.16 52.30 93.84 46.20

Correct Keypoints (PCK) metric to evaluate 2D pose accuracy, following [1,12],
with a matching threshold set to 20% of the bounding box size at the pixel level.
Table 2 presents the results of 2D pose accuracy and 3D lifting errors under
PCK and MPJPE. This demonstrates that our training method outperforms
the FT-2D for most 2D pose detectors. Notably, an exception is observed with
HRNet [8] on Human3.6M, where FT-2D achieves a slightly better 2D accuracy
with PCK of 94.93% compared to our method’s 94.82%. However, our method
excels in 3D lifting performance, achieving an MPJPE improvement of 2.9%.
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These results suggest that our 3D-guided training method not only enhances
the 3D lifting performance of the 2D pose detector but also improves 2D pose
accuracy in most cases.

B.3 Impact of Our Method on 2D Pose Estimation Quality

We conducted additional experiments to evaluate the impact of our method on
samples with both high and low 2D pose estimation accuracy. For samples with
nearly perfect 2D pose estimations based on the PCK@0.2 metric. As shown
in Tab. 3, our method reduced the 3D pose error (MPJPE) by 1.70mm, from
48.30mm to 46.60mm. However, the 2D pose accuracy experienced a slight de-
cline 0.29% decreasing from 100.00% to 99.71%. Our primary goal is to improve
3D pose accuracy, so a minor decrease in 2D pose accuracy is acceptable if we
can improve 3D pose performance.

Table 3: All samples and perfect 2D samples: Comparison of 2D and 3D performance
on Human3.6M. FT-2D represents results from the traditional 2D pose detector train-
ing method. We use the single-model training method with RTMPose and SB models.

FT-2D → Ours
All Samples Perfect 2D Samples

2D Acc (%) ↑ 95.07 → 95.22 100.00 → 99.71
3D Error (mm) ↓ 53.90 → 50.58 48.30 → 46.60

Table 4: Cross-model validation with HRNet [8] on Human3.6M [2] under MPJPE
(mm). Single-model training uses one 3D lifting network for training and tests on
others, while multi-model training excludes one 3D lifting network for training and
tests on the excluded one.

Method Trained with Tested on
SB IGANet VPose MixSTE

FT-2D - 55.1 55.3 54.8 59.3

Single-Model
Training (Ours)

SB - 54.6 53.3 57.8
IGANet 54.5 - 54.8 58.5
VPose 53.4 55.0 - 58.1
MixSTE 54.9 55.6 55.3 -

Multi-Model
Training (Ours)

w/o SB 54.8 - - -
w/o IGANet - 54.4 - -
w/o VPose - - 53.8 -
w/o MixSTE - - - 56.4
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Table 5: Cross-model validation with DWPose [10] on Human3.6M [2] under MPJPE
(mm).

Method Trained with Tested on
SB IGANet VPose MixSTE

FT-2D - 54.9 53.9 54.9 56.8

Single-Model
Training (Ours)

SB - 52.0 52.8 55.2
IGANet 54.2 - 53.3 56.5
VPose 53.7 52.3 - 56.0
MixSTE 53.5 51.7 53.3 -

Multi-Model
Training (Ours)

w/o SB 54.3 - - -
w/o IGANet - 51.4 - -
w/o VPose - - 53.3 -
w/o MixSTE - - - 53.9

Table 6: Ablation study on the scaling factor β in soft-argmax using HRNet [8] and
SB [6] under MPJPE (mm).

β 1 10 50 100 200 500
MPJPE 319.41 54.13 53.24 52.85 53.70 56.30

B.4 Additional Results Cross-Model Validiation

In this section, we present additional cross-model validation results for HRNet [8]
and DWPose [10] to further demonstrate the generalization capabilities of our
multi-model training method. Table 4 and Tab. 5 illustrate the cross-model val-
idation results for HRNet and DWPose, respectively. These results demonstrate
that our multi-model training method generally exhibits robust generalization
performance. The improvements observed in both HRNet [8] and DWPose [10]
experiments further validate the robustness and versatility of our method in
different architectural contexts.

B.5 Ablation Study on Soft-argamx

In our experiments, the soft-argmax operation utilizes a scaling factor β as a
hyperparameter, which controls the sharpness of the distribution in the heatmap
after applying softmax. A higher β value makes the distribution more peaked,
closely approximating the argmax operation, while a lower β value results in
a smoother distribution. To find the best β value, we conducted an ablation
study across a range of values: 1, 10, 50, 100, 200, and 500. As shown in Tab. 6,
the best performance is achieved when β = 100, with an MPJPE of 52.85mm.
Consequently, we set β to 100 for our experiments.

Additionally, we explored the impact of replacing softmax with ReLU, fol-
lowing [5]. The results showed that softmax achieved an MPJPE of 51.6mm,
while ReLU led to a slightly higher MPJPE of 53.1mm. These findings suggest
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Table 7: Results of different hyperparameter settings for our single-model training
method on Human3.6M. The “Proposed" row represents the baseline configuration we
used, and each subsequent row shows results from varying one hyperparameter while
keeping others at their baseline values.

Single-Model Training Method
Experiment λ2D λO λxy λz MPJPE
Proposed 0.5 0.3 10.0 20.0 51.6
Vary λ2D 0.3 / 0.7 - - - 51.6 / 52.0
Vary λO - 0.2 / 0.4 - - 51.6 / 51.9
Vary λxy - - 5.0 / 15.0 - 51.8 / 51.8
Vary λz - - - 10.0 / 30.0 52.1 / 51.8

Table 8: Results of different hyperparameter settings for our multi-model training
method on Human3.6M.

Multi-Model Training Method
Experiment λsingle λlocal λglobal MPJPE
Proposed 0.8 15.0 5.0 50.6
Vary λsingle 0.6 / 1.0 - - 50.9 / 50.9
Vary λlocal - 10.0 / 20.0 - 51.0 / 51.1
Vary λglobal - - 3.0 / 7.0 50.7 / 50.7

that softmax remains a better choice for minimizing pose estimation errors in
our framework.

B.6 Effect of Hyperparameters in Our Method

We conducted experiments with different hyperparameter settings used in both
single-model and multi-model training methods. The results for our single-model
training method are presented in Tab. 7, while the results for the multi-model
training method are shown in Tab. 8.

B.7 Comparison with Voting-Based Baseline

We conducted additional experiments comparing our method to a baseline that
utilizes a voting approach among multiple 2D pose detectors. In this approach,
the most accurate detector (HRNet [8], DWPose [10], RTMPose [3]) is selected
for each sample. This voting method achieved an MPJPE of 53.1mm. Despite
its strong performance, our method, which uses only RTMPose, outperformed
the voting approach with an MPJPE of 51.6mm, demonstrating its superior
effectiveness.
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Fig. 1: Qualitative comparisons with the traditional training method (FT-2D) with
HRNet [8] (top) and DWPose [10] (bottom) on Human3.6M and Panoptic. The blue
lines represent GT 3D poses, while the red lines indicate 3D poses lifting from the
predicted 2D poses.
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Fig. 2: Failure cases of our multi-model training methods using RTMPose [3] and
SB [6]. Both FT-2D and Ours approach show suboptimal results. Panoptic example
(left) demonstrates a case with severe occlusion, while Human3.6M (right) presents a
scenario where the subject’s clothing color is similar to the background.

C Additional Qualitative Results

In this section, we present additional qualitative results and failure cases based
on our multi-model training method with with four 3D lifting networks, tested
on SB [6]. Figure 1 shows qualitative comparisons with the traditional training
method using HRNet [8] and DWPose [10] on Human3.6M and Panoptic. The
2D poses estimated by HRNet and DWPose trained with our multi-model train-
ing method show higher accuracy and improved depth estimation compared to
the traditional training method. This improvement is particularly evident in sce-
narios with complex poses and occlusions, underscoring our method’s robustness
and effectiveness in diverse conditions.

In addition, we present failure cases of RTMPose [3] visualized in Fig. 2, in-
cluding examples that involve severe occlusions and subjects with clothing colors
matching the background. These challenging scenarios highlight areas where our
method still struggles, providing insight for further improvements.
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