
Supplementary

This supporting information is included for further reference for the reader. The
supplementary materials document contains diagrams of the network structure
and experimental results that provide additional illustrations to the article.

Architecture of EfficientNetV2’s blocks

H

C

W

H
C*expansion

W
H

C*expansion

W
H

C*expansion

W H

C

W

Conv
1x1

Depthwise Conv
3x3 SE

Conv
1x1

MBConv

Fused MBConv

H

C

W

H
C*expansion

W
H

C*expansion

W H

C

W

Conv
3x3 SE

Conv
1x1

SE: SqueezeExcite EfficientNetv2

H

C

W

1 C
1

1 C*SE ratio
1

1 C1

Conv
1x1

Conv
1x1AdaptiveAvgPool2d

Figure 1: The architecture of Fused MBConv and naive MBConv.

As Fig. 1 indicates, MBConv starts with a 1x1 convolutional layer for up-
scaling, followed by a BN and Swish activation function; then the following is
a depthwise convolutional layer, and its output is fed to the SE module. The
SE module begins with a pooling layer shaping the input into 1x1xC dimen-
sions, next the result is downscaled, upscaled, and multiplied with the original
input; finally, the output is obtained by dimensionality reduction via 1x1 con-
volutional layer with shortcut branch summation. In contrast to MBConv, Fuse
MBConv combines MBConv’s 1x1 convolutional layer and 3x3 depthwise con-
volutional layer into a single step with a smaller expansion ratio, allowing for
a lower amount of memory used in the computation, greatly reducing the com-
putational complexity.

Architecture of Gold-YOLO’s blocks

The neck structure from Gold-YOLO consists of low semantic fusion and high
semantic fusion. The structure of low semantic fusion is shown in Fig. 2, which
consists of four sections: Low-FAM, Low-IFM, Low-LAF, and Inject. Firstly,
Low-FAM, scales the C2, C3, C4, and C5 with either an average pooling layer
or an upsampling (Billinear) method to align to a uniform resolution; Low-
IFM limits the input to the embed dimension via Conv (convolutional layer
+ BN + SiLU activation function) to get the features, the features are then
passed through k RepVGG blocks, and next the Conv outputs the features
which are finally split into gobal features with the number of channels c3 and
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Figure 2: The architecture of low semantic fusion in the neck structure from
Gold-YOLO.

c4 respectively; Low-LAF computes C3, C4, C5 and C2, C3, C4 respectively,
taking the former as an example, it limits C3, C4, C5 to a uniform channel of c4
by SimConv (convolutional layer + BN + ReLU activation function), and then
concatenates C3, C5 through average pooling layer or up-sampling to generate
local features with a uniform resolution; In Inject, the local features are passed
through SimConv and Conv, multiplied and added to the two branches of the
gobal features separately, finally enter into the RepVGG blocks to output P4
feature map. As for C2, C3, and C4, the same procedure is followed to output
the P3 feature map; the P5 feature map is directly obtained from C5.

The structure of high semantic fusion is presented in Fig. 3, which is likewise
divided into four steps: High-FAM, High-IFM, High-LAF, and Inject. High-
FAM unifies P3, P4, and P5 by SimConv, and then uses the same approach
in low semantic fusion to unify the resolution and concatenate them; High-IFM
employs k transformer blocks, and splits them into global features with channels
p4 and p5 respectively; High-LAF and Inject have a similar architecture with
the above low semantic fusion’s. N3 is directly derived from P3, then N3, N4,
and N5 are the final outputs of the neck, which will be input to the detect head
for prediction.

Inference results for various deployment tools
We use different deployment tools for inference, and the corresponding inference
times of S3Det are shown in Table 1. It can be observed that the model deployed
with TensorRT is the fastest, reaching an average of 29ms/per image speed at
INT32 accuracy, almost 3 times as fast as the original.

Inference results for various deployment tools are exhibited in the following
Fig. 4. It is shown that the prediction results of the transformed model with-
out reducing accuracy are similar, but using TensorRT at INT8 accuracy loses
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Figure 3: The architecture of high semantic fusion in the neck structure from
Gold-YOLO.

Table 1: Efficiency comparison of various deployment tools.

Latency(ms)
Deployment Tool min max mean
origin 99.7 111.6 103.7
ONNX Runtime 934.9 1032.5 964.9
OpenVINO 201.3 243.2 208.2
TorchScript 39.9 44.9 42.9
NCNN 426.7 473.1 465.7
TensorRT INT32 27.8 30.5 29
TensorRT FP16 11.8 13.2 11.9
TensorRT INT8 7.6 17.1 8.8

almost all the predictions. In contrast, using TensorRT at FP16 accuracy can
not only promote the inference speed and compress the model but also the loss
of accuracy is limited to a certain extent.

Performance of the S3Det under four extreme weathers

The detection task remains challenging under these weather conditions, with
the model experiencing missed detections, particularly in dusk weather where it
struggles to detect small-sized ships. Conversely, the model performs relatively
better in rainy weather conditions. Additionally, compared to the harbor envi-
ronment with multiple objects and various obstacles, the model demonstrates
superior performance in detecting ships in the open sea.
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Figure 4: Inference result accelerated up by various deployment tools.
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Figure 5: S3Det results at dusk(a,e,i,m), foggy(b,f,j,n), cloudy(c,g,k,o),
and rainy(d,h,l,p) days, where (a,b,c,d,e,f,g,h) are harbor collections and
(i,j,k,l,m,n,o,p) are open sea collections.
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