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1 Implementation Details

Multimodal One-Shot Adaptation. We design two MLPs to project the fAV

to the embedding space of τA and τV , respectively. These MLPs share the same
architecture, each comprising two linear layers with a width of 1024. We apply
a ReLU activation function between the linear layers. During multimodal one-
shot adaptation, in addition to updating the parameters of the MLPs, we also
update the parameters of key and value matrices in cross-attention layers within
diffusion models. We set the learning rate of the audio branch as 5e−5, the vision
branch as 5e−5, and the MLP as 1e−4. We use the Adam optimizer to optimize
parameters, performing 300 steps with a batch size of 1. We use the DDPM
scheduler [2] (1000 diffusion steps) for training and the DDIM scheduler [5] (50
steps) for inference.
Cross-Modal Semantic Enhancement. We apply cross-model semantic en-
hancement to cross-attention layers in the image diffusion model. After we cal-
culate an attention map M between the query matrix of image patches and the
key matrix of text tokens, we scale this attention map M according to Eq. (7).
Then we multiply the updated attention map M∗ and the value matrix of text
tokens. We perform cross-modal semantic enhancement for all inference steps.
Prompt Template for Inference. To benchmark the performance of language-
guided audio-visual editing methods on the OAVE dataset, we collect 25 prompt
templates (see Table 1). For each prompt template, we design a vision prompt
and an audio prompt. Vision and audio prompts have the same editing target
but different leading words — vision prompts start with “an image of {}” and
audio prompts begin with “a recording of {}”. When we use templates to edit
an audio-visual sample, we replace “{}” with the category name of this sample,
such as “bird ” or “bell.”

These prompts can instruct a language-guided audio-visual editing model to
add a new object to the user-provided data, assessing the audio-visual composi-
tion ability of an editing method. For example, “{} with a dog barking” needs the
model to insert the sound of a dog barking into the original audio and add the
image of a barking dog to the original photo. Additionally, these prompts can de-
mand a model to alter the environment of the user-provided sounding object. For
instance, a model should generate an image depicting a cathedral background
and an audio clip with noticeable reverberation following the prompt “{} in a
cathedral.”
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Table 1: Prompt templates for inference. We design these prompt templates to edit
user-provided audio-visual samples.

Vision Prompt Audio Prompt

An image of {} with a dog barking. A recording of {} with a dog barking.
An image of {} with a child laughing. A recording of {} with a child laughing.
An image of {} with birds chirping. A recording of {} with birds chirping.
An image of {} with waves crashing. A recording of {} with waves crashing.
An image of {} with people chatting. A recording of {} with people chatting.
An image of {} with a car passing by. A recording of {} with a car passing by.
An image of {} with raindrops falling. A recording of {} with raindrops falling.
An image of {} with leaves rustling. A recording of {} with leaves rustling.
An image of {} with a train whistle. A recording of {} with a train whistle.
An image of {} with a cat meowing. A recording of {} with a cat meowing.

An image of {} in a small room. A recording of {} in a small room.
An image of {} in a large room. A recording of {} in a large room.
An image of {} in a cathedral. A recording of {} in a cathedral.
An image of {} in a big crowd. A recording of {} in a big crowd.
An image of {} at a bustling marketplace. A recording of {} at a bustling marketplace.
An image of {} at a lively carnival. A recording of {} at a lively carnival.
An image of {} under water. A recording of {} under water.
An image of {} in the rain. A recording of {} in the rain.
An image of {} in a serene forest. A recording of {} in a serene forest.
An image of {} on a peaceful beach. A recording of {} on a peaceful beach.
An image of {} by a crackling fireplace. A recording of {} by a crackling fireplace.
An image of {} on a tranquil lake. A recording of {} on a tranquil lake.
An image of {} in a bustling city street. A recording of {} in a bustling city street.
An image of {} in a mysterious cave. A recording of {} in a mysterious cave.
An image of {} on a serene mountaintop. A recording of {} on a serene mountaintop.

2 Conclusion

This paper investigates the novel language-guided joint audio-visual editing
problem and proposes a new diffusion-based editing framework. We incorpo-
rate multimodal one-shot adaptation and cross-modal semantic enhancement to
achieve superior editing quality. We present both quantitative and qualitative
results, demonstrating the advantages of our approach over existing methods.

Our current focus lies in image-level audio-visual editing. However, it is im-
perative to explore the video-level audio-visual editing in future research. Video
diffusion models, such as Sora [1], have shown the potential to generate realis-
tic videos mimicking real-world scenarios. Expanding audio-visual editing to the
video level would yield promising outcomes. Nevertheless, video editing presents
greater challenges compared to our current task, as it requires maintaining tem-
poral consistency and audio-visual synchronization.

Moreover, our framework is built upon two independently trained diffusion
models [3, 4]. It is worth utilizing a jointly trained audio-visual model as the



Language-Guided Joint Audio-Visual Editing 3

foundation for editing audio-visual content, as these models typically produce
audio-visual samples characterized by high cross-modal consistency.
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