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In this appendix, we provide more details of our approach, such as additional
experiment results, implementation details, and discussion.

This supplementary is organized as follows:

– Notations
– Additional Experiment Results
– Implementation Details

◦ Source Model Details
◦ Hyperparameters
◦ Silhouette Score
◦ Pseudo Code
◦ Baseline Details

– Discussion
◦ K-means Clustering Invocations
◦ Limitations
◦ Potential Societal Impact

A Notations

We summarize the notations throughout the paper in Table 1. The notations are
listed under five groups: models, spaces, variables, measures, and hyperparame-
ters.

B Additional Experiment Results

In this section, the source model is cross-modal linear probing [7] with 16-
shot source samples. Unless otherwise mentioned, the source model is based
on CLIP(ViT-B/16) [14].

Impact of Varying |C|. We evaluate the robustness of COCA by contrasting
it with other methods under varying numbers of common classes |C| on Office-
Home in OPDA. Fig. 1a and Fig. 1b illustrate that COCA overall outperforms
and demonstrates greater stability than preceding models.
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Table 1: Notation Table
Symbol Description

Models

Gimg Image encoder
Gtext Text encoder
ω Parameters of the image/text encoders
hθ Closed-set classifier

hEMA
γ EMA teacher classifier

Spaces

Cs Source/Known class set
Ct Target class set
C Common class set
Cs Source-private class set
Ct Target-private/unknown class set
X Target image set
Z img Image feature set
Ztext Text feature set
V img Image prototype set

Variables

xi Unlabeled target image
xM
i Unlabeled masked target image

a photo of a {CLS} Text template
yc Ground truth label for a photo of a {CLS}
ŷi Pseudo label for target image xi

zimg
i Target domain image feature

ztext
c Text feature

{vimg
k }Kk=1 Image prototype generated by K-means
pc Image positive prototype for a known class c

{nc
k}K−1

k=1 Image negative prototypes for a known class c
p(y|xi; γ) Soft label generated by the teacher classifier hEMA

γ

Measures
RIB Information Bottleneck
I Mutual Information

U(xi) Uncertainty for target image xi

Hyperparameters
K K-means hyperparameter
τ Threshold for distinguishing known and unknown images
r Mask ratio

Ablation Study. We conducted comprehensive ablation studies on the three
datasets to assess the effectiveness of distinct components within our method.
The results are summarized in Table 2, where OS = |Cs|

|Cs|+1×OS∗+ |Cs|
|Cs|+1×UNK

indicates the average accuracy on different classes. Compared to COCA-w-
pc, COCA shows 3.1% improvement in HOS for OPDA on OfficeHome, 3.4%
on VisDA, and 1.3% on DomainNet. It indicates that textual prototypes zimg

c

are more appropriate than image prototypes pc for positive prototypes due to
RIB(Ztext) > RIB(V img), as discussed in our paper (Eq. (5)). COCA-w/o-hθ

represents the combination of the ACTP module and the zero-shot CLIP with-
out the linear classifier hθ. The HOS results of COCA-w/o-hθ highlight the
potential of integrating image and text encoders within VLMs. This integration
enables the precise separation of common and unknown class samples. However,

⋆ Corresponding author
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Table 2: OS and HOS (%) of variants of COCA
in OPDA.

OfficeHome VisDA-2017 DomainNet

OS HOS OS HOS OS HOS

COCA-w/o-hθ 88.8 83.7 83.0 77.7 50.3 63.8
COCA-w/o-MIECI 89.0 86.6 83.6 82.2 65.7 72.9
COCA-w-pc 81.0 83.8 74.7 79.8 66.2 71.8
COCA 90.2 86.9 85.2 83.2 66.4 73.1

Table 3: OS and HOS (%) of
COCA with CLIP(RN50x16)
in OPDA.

OS HOS

OfficeHome 85.9 84.0
VisDA-2017 71.2 76.2
DomainNet 60.2 69.0
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Fig. 1: (a-b)HOS (%) with respect to the number of common class |C| on Office-
Home in OPDA. (c) HOS (%) with respect to τ and r on OfficeHome in OPDA.

a considerable performance gap remains when compared to the full COCA
method. The COCA method demonstrates significant improvements, achiev-
ing a 3.2% increase in HOS for OPDA on OfficeHome, a 5.5% improvement on
VisDA, and a remarkable 9.3% enhancement on DomainNet. The result gaps of
COCA and COCA-w/o-hθ show our method’s effectiveness. The innovative
paradigm we propose in our paper (Fig. 2), emphasizing classifier optimization
rather than the image encoder optimization seen in previous UniDA/SF-UniDA
methods, presents a more fitting approach based on VLMs to tackle SF-UniDA
challenges as we discussed in our paper (Sec. 3.3). COCA-w/o-MIECI in-
dicates the removal of the MIECI module. A comparative analysis of results
between COCA-w/o-MIECI and COCA reveals that the MIECI module
plays a crucial role in promoting the learning of context relations within target
images. This results in an increase in mutual information I(Z img,Y; θ). As dis-
cussed in our paper (Sec. 3.2), this improvement directly contributes to enhanced
model performance, specifically in terms of accuracy in classifying common class
samples. To visually assess the separation between the common and unknown
classes on VisDA-2017 in OSDA, we present the uncertainty density distribu-
tion in Fig. 2. The level of uncertainty indicates the extent to which the model
regards the input image as belonging to an unknown class. The results demon-
strate that while the source model performs well in classifying common classes,
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Table 4: HOS (%) with respect to prompts and K selecting methods in OPDA.

(a) HOS (%) comparison of various prompts.

Prompt OfficeHome VisDA DomainNet

a photo of a {CLS} 86.9 83.2 73.1
a photo of some {CLS} 87.4 82.6 72.9
a picture of a {CLS} 88.3 82.1 72.1
a painting of a {CLS} 86.5 82.2 73.0

this is a photo of a {CLS} 87.4 84.0 72.1
this is a {CLS} photo 86.6 83.3 72.5

(b) HOS (%) comparison of various K
selecting methods.

Method OfficeHome VisDA DomainNet

Calinski-Harabasz [1] 86.9 82.7 72.8
Davies-Bouldi [2] 86.9 83.2 73.0
Silhouette [15] 86.9 83.2 73.1

(a) Source Model (16-shot) (b) + COCA-w-pc (c) + COCA

Fig. 2: Uncertainty distribution of the source model [7], the source model +
COCA-w-pc, and the source model + COCA for common and unknown class
images on VisDA-2017 in OSDA.

it struggles with the separation of unknown classes. In contrast, COCA-w-pc
exhibits imprecise recognition of common classes. Notably, COCA achieves a
better balance between common class classification and unknown class identifica-
tion, highlighting the superiority of textual prototypes. The results of the source
model [7] using the EfficientNet-style [17] CLIP model, i.e., CLIP(RN50x16),
is presented in Table 3. These results demonstrate that our approach is adapt-
able to various image encoder frameworks, including CNNs. The result gaps ex-
ist between COCA-w-CLIP(ViT-B/16) and COCA-w-CLIP(RN50x16),
attributed to (1) the robustness of ViTs to deal with significant distribution
shifts, e.g ., recognizing object shapes in less textured data such as paintings [9],
and (2) significant architectural differences in the image and text encoders of
CNN-based CLIP. Since the classifier is initialized based on text features, when
the closed-set model utilizes the pseudo label unknown for open-set recognition,
the architectural differences hinder the classifier from adequately aligning with
common class image features. Specifically, we observe that the common class
accuracy of the closed-set classifier is susceptible to the pseudo label unknown
when the source model is based on CLIP(RN50x16). We deduce that COCA
has a stronger affinity with ViT architecture CLIP.

Hyperparameter Sensitivity. Fig. 1c demonstrates the sensitivity to the
hyperparameter τ and mask ratio r in OPDA on OfficeHome. The source model
[7] + COCA is stable across a range of values for both τ and r. The compar-
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Table 5: Optimal K ∈ [1/3|Cs|, 1/2|Cs|, |Cs|, 2|Cs|, 3|Cs|]
selected by various methods in OPDA.

Method OfficeHome (|Cs| = 15, |Ct| = 60) VisDA-2017 DomainNet (|Cs| = 200, |Ct| = 295)

→Ar →Cl →Pr →Rw (|Cs| = 9, |Ct| = 9) →P →R →S

Calinski-Harabasz [1] 45 45 45 45 27 600 600 600
Davies-Bouldi [2] 45 30 45 45 9 200 200 200
Silhouette [15] 45 45 45 45 9 200 400 400

Table 6: Batch size for
source model training.

batch size

8 ≤ 2|Cs| < 16 8
16 ≤ 2|Cs| < 32 16
32 ≤ 2|Cs| < 64 32
64 ≤ 2|Cs| 64
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Fig. 3: HOS rate of OVANet (ViT/CLIP) [16], GLC (ViT/CLIP) [13], the source
model [7], and the source model + COCA on VisDA-2017 in OPDA. Each box-
plot ranges from the upper and lower quartiles with the median as the horizontal
line and whiskers extend to 1.5 times the interquartile range.

ative experiments of prompts are shown in Table 4a, and our method exhibits
stable performance across a variety of prompts. We substitute the Silhouette
method [15] with alternative methods, including the Calinski-Harabasz method
[1] and the Davies-Bouldin method [2], to ascertain the optimal K value for the
K-means clustering. This adjustment aims to evaluate COCA’s generalization
capabilities, with the results presented in Table 4b. Comparing the results of
Silhouettes, Calinski-Harabasz, and Davies-Bouldin methods, we deduce that
COCA exhibits good generalization capabilities. This conclusion arises from the
stable performance of COCA in OPDA across various methods used to determine
the optimal K value for the K-means clustering. The optimal K value at the
target domain adaptation phase selected by various methods [1,2,15] in OPDA
is presented in Table 5.

Boxplots. An illustration of boxplots with 5 different random seeds in Fig. 3
demonstrates that COCA achieves more accurate performance in separating
common and unknown classes than existing methods.

C Implementation Details

C.1 Source Model Details

The source model is linear probe CLIP [14], CLIP-Adapter [4], or cross-modal
linear probing [7] based on CLIP(ViT-B/16). At the source model training phase,
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we freeze the image and text encoders and optimize the classifier. The classifier of
linear probe CLIP [14] or cross-model linear probing [7] is the single linear layer.
The classifier of CLIP-Adapter [4] is the adapter module. The basic settings are
as follows: (1) Performing a learning rate warmup with 50 iterations, during
which the learning rate goes up linearly from 0.00001 to the initial value. (2)
Performing a cosine annealing learning rate scheduling over the course of 12800
iterations. (3) Employing early stopping based on the few-shot validation set
performance evaluated every 100 iterations.

We have established the batch size for source model training as outlined in
Table 6. We configure the weight decay to 0.01 for all benchmarks and the initial
learning rate to 0.001 for OfficeHome [19] and VisDA-2017 [12], and 0.0001 for
DomainNet [11]. The optimizer of the source model is AdamW [8]. Given that
the cross-modal linear probing model [7] necessitates the inclusion of varied class
names within a mini-batch for training, and that the input is comprised of a 50-
50 split between images and text. For the CLIP-Adapter model [4], we follow
the same 2-layer MLP architecture with the given residual ratio of 0.2.

Image Loss. Given a image feature zimg,s
i for the source image xs

i and the
corresponding ground truth label ysi , the image loss ℓimg

s for the source model
training is ℓimg

s = − 1
Ns

∑Ns

i=1
ysi log(σ(h

s
θ(z

img,s
i ))), where Ns is the number of

source samples.
Text Loss. Given a text feature ztext

c converted from text template a photo
of a {CLS}, the corresponding ground truth label yc, the text loss ℓtext

s for the
cross-modal linear probing model is ℓtext

s = − 1
|Cs|

∑|Cs|
c=1

yc log (σ (hs
θ (z

text
c ))).

Overall Loss. For linear probe CLIP and CLIP-Adapter models, the overall
loss ℓs for source model training is ℓs = ℓimg

s . For the cross-modal linear probing
model, the overall loss ℓs for source model training is ℓs = ℓimg

s + ℓtext
s .

C.2 Hyperparameters

The source model is based on CLIP(ViT-B/16) or CLIP(RN50x16). At the tar-
get domain adaptation phase, we applied the AdamW [8] optimizer, configured
with beta values of (0.9, 0.999), an epsilon of 1e-08, and a weight decay of 0.01.
The batch size is 64 for all benchmarks. The learning rate was adjusted ac-
cording to the sample number of target domains, resulting in rates of 1e-3 for
OfficeHome, 1e-4 for VisDA-2017, and 1e-5 for DomainNet. The MIECI mod-
ule utilizes the following parameters: mask ratio r = 0.5 for CLIP(ViT-B/16)
and r = 0.01 for CLIP(RN50x16); patch size w = 16 for CLIP(ViT-B/16) and
w = 4 for CLIP(RN50x16); smooth factor α = 0.999 as suggested by [18]; and
color augmentation parameters as recommended in [5]. All of our experiments
are conducted using an RTX-4090 GPU and PyTorch-2.0.1.

C.3 Silhouette Score

For a image feature zimg
i ∈ Ck, where Ck is one of the K clusters, computing

the mean distance between zimg
i and other image features zimg

j within the same
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cluster as follows:

a(zimg
i ) =

1

|Ck| − 1

∑
zimg
j ∈Ck,i̸=j

d(zimg
i , zimg

j ), (1)

where |Ck| denotes the number of image features belonging to cluster Ck, and
d(zimg

i , zimg
j ) is the distance between zimg

i and zimg
j within the cluster Ck.

b(zimg
i ) = min

l ̸=k

1

|Cl|
∑

zimg
j ∈Cl

d(zimg
i , zimg

j ) (2)

is the distance between zimg
i and the "neighboring cluster" of zimg

i . The mean
distance from zimg

i to all image features zimg
j in Cl is calculated as the dissimilarity

of zimg
i to another cluster Cl, where Cl ̸= Ck. The Silhouette score s(zimg

i ) is
defined as:

s(zimg
i ) =

b(zimg
i )− a(zimg

i )

max{a(zimg
i ), b(zimg

i )}
. (3)

High Silhouette scores for the majority of image features suggest that the K-
means hyperparameter K value is well-chosen, indicating that image features
within the same cluster are closely grouped and well-separated from those in
other clusters.

C.4 Pseudo Code

The training procedure of the proposed method is summarized in Algorithm 1.

C.5 Baseline Details

We have reproduced several open-source UniDA/SF-UniDA models, and the
details of the parameters are provided below:

DCC. We use CLIP(ViT-B/16) [14] as the backbone. The classifier is made
up of two FC layers. We use Nesterov momentum SGD to optimize the model,
which has a momentum of 0.9 and a weight decay of 5e-4. The learning rate
decreases by a factor of (1+α i

N )−β , where i and N represent current and global
iteration, respectively, and we set α = 10 and β = 0.75. We use a batch size
of 36, and the initial learning rate is set as 1e-4 for VisDA-2017, and 1e-3 for
OfficeHome and DomainNet. We use the settings detailed in the original paper
[6]. PyTorch [10] is used for implementation.

OVANet. For OVANet [16] with ViT-B/16 [3] and CLIP(ViT-B/16) back-
bones, we adopt the hyperparameter settings outlined in the original paper [16].
Specifically, we utilize inverse learning rate decay scheduling for the learning rate
schedule and assign a weight of λ = 0.1 for the entropy minimization loss across
all benchmarks. The batch size is fixed at 36, with the initial learning rate set to
0.01 for the classification layer and 0.001 for the backbone layers. PyTorch [10]
is used for the implementation.
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Algorithm 1 Traning Producedure of the Proposed Method

Require: Target domain dataset Dt = {xi}Ni=1, prompt a photo of a {CLS}, image
encoder Gimg, text encoder Gtext, source model’s classifier hs

θ, K candidate list
[1/3|Cs|, 1/2|Cs|, |Cs|, 2|Cs|, 3|Cs|], and other necessary hyperparameters

Ensure: Target domain classifier hθ

1: Freeze Gimg and Gtext

2: Input Dt to Gimg to generate target-image features Z img =
{
zimg
i

}N

i=1
3: bestK ← 0, maxScore← 0
4: for candidateK ∈ [1/3|Cs|, 1/2|Cs|, |Cs|, 2|Cs|, 3|Cs|] do
5: K ← candidateK ▷ K-means hyperparameter
6: Input Z img to K-means to cluster all target image features
7: Calculate target image features’ Silhouette score s

(
zimg)

8: Take an average score s = 1
N

∑N
i=1 s

(
zimg
i

)
9: if s > maxScore then

10: bestK ← candidateK, maxScore← s
11: end if
12: end for
13: hθ ← hs

θ, h
EMA
γ ← hs

θ ▷ Initialize the classifiers hθ and hEMA
γ

14: Input prompts to Gtext to generate text features Ztext =
{
ztext
c

}|Cs|
c=1

15: K ← bestK ▷ K-means hyperparameter
16: Input Z img to K-means to generate image prototypes {vimg

k }Kk=1

17: Determine negative image prototypes {nc
k}K−1

k=1 for known class c
18: Generate a pseudo label ŷi for each target image xi

19: for epoch = 1 to maxEpoch do
20: Calculate the image cross-entropy loss ℓimg

21: Calculate the text cross-entropy loss ℓtext

22: Generate patch mask M and masked target image xM
i

23: Calculate the mask loss ℓmask

24: θ ← θ −∇θ(ℓ
img + ℓtext + ℓmask) ▷ Update hθ

25: γ ← αγ + (1− α)θ ▷ Update the teacher classifier hEMA
γ

26: end for

GLC. For GLC [13] with ViT-B/16 and CLIP(ViT-B/16), we employ the
SGD optimizer with a momentum of 0.9 at the target model adaptation phase.
The initial learning rate is set to 0.001 for OfficeHome and 0.0001 for both
VisDA-2017 and DomainNet. The hyperparameter ρ is fixed at 0.75 and |L| at
4 across all datasets, while η is set to 0.3 for VisDA and 1.5 for OfficeHome and
DomainNet. All these hyperparameters correspond to the settings detailed in
the original paper [13]. PyTorch is used for the implementation.

D Discussion

D.1 K-means Clustering Invocations

In this subsection, we will discuss the frequency of K-means clustering invoca-
tions per epoch in OPDA with that of GLC [13].
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Table 7: The number of calls of K-means clustering in OPDA. 100 clustering
iterations per call.

OfficeHome VisDA-2017 DomainNet

GLC 15 ×maxEpoch 9 ×maxEpoch 200 ×maxEpoch
Ours 1 1 1

As shown in Table 7, compared to GLC [13], our method significantly reduces
the times of K-means clustering. Our method merely needs to cluster all image
features once, and then it can identify the negative prototypes for all known
classes. In contrast, the GLC model must apply the K-means cluster |Cs| times
per epoch to locate negative prototypes for all known classes. This suggests that
our methods can save significant time on large-scale datasets, particularly when
|Cs| is large.

GLC employs the Top-K method to obtain positive image features for a
known class c. The hyperparameter of Top-K is represented as K ′ to differ-
entiate it from the K-means hyperparameter K. After implementing Top-K for
each known class, GLC obtains a positive image feature set {zimg, pos

c,i }K′

i=1, where
zimg, pos
c,i symbolizes the positive image feature for a known class c and a negative

image feature set {zimg, neg
c,j }N−K′

j=1 = {zimg
l }Nl=1/{z

img, pos
c,i }K′

i=1, where zimg, neg
c,j

signifies the negative image feature and {zimg
l }Nl=1 represents the target image

feature set, with N being the number of target samples. As the positive im-
age feature set varies for each known class c, so too does the negative image
feature set for each respective class. Thus, GLC needs to invoke the K-means
clustering |Cs| times to obtain the negative image prototype sets {{nc

m}K−1
m=1}

|Cs|
c=1

for all known classes. For instance, consider six image features {zimg
l }6l=1, two

known classes {c1, c2} and the unknown class unknown, where {zimg
1 , zimg

2 } be-
long to c1, {zimg

3 , zimg
4 } to c2, and {zimg

5 , zimg
6 } to unknown. GLC uses Top-K

(K ′ = 2) to select the positive image features {zimg,pos
c1,i

}2i=1 = {zimg
1 , zimg

2 }
for the class c1 and {zimg,pos

c2,i
}2i=1 = {zimg

3 , zimg
4 } for the class c2; the nega-

tive image features for c1 are {zimg,neg
c1,j

}4j=1 = {zimg
3 , zimg

4 , zimg
5 , zimg

6 } and for
c2 are {zimg,neg

c2,j
}4j=1 = {zimg

1 , zimg
2 , zimg

5 , zimg
6 }. Given that the negative image

feature sets {{zimg, neg
c,j }4j=1}c2c=c1 varies for the known classes c1, c2, GLC re-

quires to invoke K-means clustering |Cs| = 2 times to generate the negative
image prototype sets {nc1

m}K−1
m=1 = K-means

(
{zimg, neg

c1,j
}4j=1

)
and {nc2

m}K−1
m=1 =

K-means
(
{zimg, neg

c2,j
}4j=1

)
for all known classes. Furthermore, in GLC, since both

the image encoder and the bottleneck layer—situated between the image encoder
and the classifier for local census clustering—require updates at each epoch, the
K-means clustering must be invoked at each epoch.

On the other hand, in our approach, the target image feature set {zimg
l }Nl=1

remains constant. We first apply K-means to {zimg
l }Nl=1 to derive all image pro-
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totypes {vimg
k }Kk=1 = K-means

(
{zimg

l }Nl=1

)
. Subsequently, we perform matrix

multiplication between the text feature ztext
c of known class c and the image

prototype set {vimg
k }Kk=1 to identify positive and negative image prototypes. As

matrix multiplication is considerably more efficient than K-means, our approach
significantly reduces computational time in comparison to GLC. In our method,
we only need to invoke the K-means clustering at the first epoch since the image
and text encoders are frozen.

D.2 Limitations

The proposed approach may be unsuitable for small DA datasets since they
cannot provide enough negative images to adapt the classifier. Furthermore,
we observe that the quality of pseudo labels affects the model performance. In
cases where the dataset does not consist of natural image datasets, e.g ., medical
images, vision-language models pre-trained on large-scaled natural datasets such
as CLIP may not yield high-quality pseudo labels, thereby failing to guide the
classifier adaptation accurately.

D.3 Potential Societal Impact

Our method can adapt a trained few-shot learner to unlabeled target datasets
with uncertainty domain and category shifts by optimizing the classifier. In nu-
merous instances where source datasets are unobtainable and the quantity of
source samples is restricted, our approaches do not need to directly access source
samples and substantially reduce the label cost of source samples. This might
make technology more accessible to organizations and individuals with limited
resources. However, one potential downside is the increased availability of the
systems to those seeking to exploit them for unlawful purposes. While we report
an enhanced performance in comparison to the current state-of-the-art methods,
the results remain unsatisfactory in extreme scenarios of domain shift or cate-
gory shift. Thus, our approach should not be deployed in critical applications or
for making significant decisions without human supervision.
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