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Supplementary Material for Multiview Detection
with Cardboard Human Modeling

Fig. 1: The illustration of the neglected persons in Wildtrack dataset.

1 Discussion on the missing annotations

As mentioned in Section 4.6, we identify severe label omissions in the Wildtrack
dataset, two typical examples are shown in Fig. 1. In the first image batch marked
with green boxes, 4 persons in the bottom left corner are neglected, however,
our algorithm successfully predicts these persons’ locations. In the other batch of
images marked with red and yellow boxes, our system demonstrates that there
are more people neglected near the edge of the detection area. According to
the image, these persons are standing inside the detection area bounded by the
purple lines, while their labels are not provided. The lack of such annotations
may cause a ‘fake’ high false positive rate if the algorithm successfully makes
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Fig. 2: The visualization of the masking operation applied on the Wildtrack dataset. In
each camera view, the origin detection area defined in the original dataset is bounded
with purple lines, while the area boundaries after masking are colored in blue. As illus-
trated in the BEV heatmap, we identify an enormous amount of missing annotations
near the edge of the detection plane (lies in between the purple ground area and the
blue masked area), the mask is applied to filter most of the missing labels and ambigu-
ities. The masked detection area is marked by a bright blue color in the last two BEV
heatmaps.

the prediction on that target. Therefore, for a fair comparison on the Wildtrack
dataset, we apply a mask on the predicted BEV map for all the previous methods,
specifically, we define an area where the label omission has a high occurrence
rate (usually refers to the area that nears the edge of the square), and we simply
ignore the prediction results in this area to avoid ‘fake’ high false positive rate,
the shape of the mask is shown in Fig. 2.

We further analyze the source of these unlabelled targets. As shown in the
BEV map of Fig. 2, despite few errors made by human annotators, most of
the ambiguities occur around the top edge of the detection square due to triv-
ial camera calibration inaccuracy and the special architectural structure of the
square, i.e., the stairs occurred at the edge of the square magnify the calibration
error. As demonstrated in Fig. 1H, the defined detection plane edge colored in
purple is slightly shifted from the actual edge of the plane. Coincidentally, a
stair occurs at the edge of the square, which drastically enlarges the disparity
between the actual edge and the shifted one by adding an extra distance in Z
axis, as demonstrated in Fig. 4. In this figure, the person (or the person’s lower
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Fig. 3: (A) Comparing different aggregation strategies after projection. (B) The visu-
alization of different point clouds sampling rates.

Fig. 4: A side view of the detection plane and the stairs occurred at its edge shown in
Fig. 1H. This demonstrates how trivial calibration error leads to huge edge shifting of
the detection plane in the Wildtrack dataset. The red point represents the actual edge
of the detection plane, and the purple point stands for the erroneous edge calculated
according to the camera calibration file.

leg) colored in purple is counted as a target standing inside the detection plane
in our proposed system when seeing from particular views. In fact, all previous
methods that utilize camera calibrations suffer from this problem to a specific
extent on the Wildtrack dataset. While with the mask, these ambiguities are
avoided.

We argue that the evaluation process remains valid with this mask since
the mask only covers the areas near the edge of the detection area where the
crowdedness and occlusion of the pedestrians are relatively low compared with
the center area. Thus, the performance of the algorithms on localizing targets
under crowdedness and occlusion can be evaluated as equally as on the origin
Wildtrack dataset. All the previous methods report higher performance scores
after masking.

2 Different point clouds sampling rate of ROI

To clearly demonstrate the sample rate shown in Fig. 7, we visualize the results
of one of the detection regions in 3D space. As Fig. 3B shows, the first row of the
figure shows that we take random sampling operation. The sample rate between
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Fig. 5: Failure cases on the MultiviewX dataset. Green boxes and dot points are ground
truth and blue boxes and dot points are detection results. Failure detections are caused
by (A) severe occlusion and (B) the absence of pedestrians’ feet.

0.4 and 0.6 not only represents sufficient appearance features of the target but
also reduces the storage of the point clouds to a certain extent. In our proposed
pipeline, we set 0.5 as the default sample rate.

3 Benefit of neural network for aggregation

To highlight the significance of our neural network-based point clouds aggrega-
tion procedure, we compare our method with the clustering pipeline proposed
in [3]. To ensure the fairness of the experiment, we use the standing point as
the position feature and the high-dimensional re-ID feature as the appearance
feature. We cluster these high-dimensional features using the same clique-based
clustering method introduced in [3]. The performance is shown in Fig. 3(A) well
illustrates the efficiency of adopting neural networks to aggregate point clouds.

4 Depth estimation using ray tracing

Depth of localized ROI is essential for modeling cardboard humans, due to the
lack of depth value labels, we adopt the ray tracing ( [1]) technique to calculate
the depth for each ROI localization result, namely each bounding box region.
For each pedestrian detection result, we calculate the depth of the head and
estimated standing point, and fill the rest of the area with interpolated depth
values. With the calculated depth, we can project the 2D ROI localization results
back into the 3D space to form 3D cardboards.

Given ray tracing Eq. 1, we define the standing point as Pstandpoint = [P s
x , P

s
y , P

s
z ],

and head point Phead = [P h
x , P

h
y , P

h
z ].



5

Depth of the standing point We first calculate the 3D coordinate of the
pedestrian standing point. For each standing point, we further define the camera
3D center as O = [Ox, Oy, Oz], the direction of the ray direction Dstandpoint from
the camera center to the standing point as Dstandpoint = [Ds

x, D
s
y, D

s
z], and the

distance between the camera center and standing point on the object as t. The
ray tracing formula is denoted as:P s

x
P s

y
P s

z

 =

Ox
Oy
Oz

+ t

Ds
x

Ds
y

Ds
z

 i.e.


P s

x = Ox + tDs
x

P s
y = Oy + tDs

y

P s
z = Oz + tDs

z

(1)

Given the premise that the standing point is on the ground plane, where
Z = 0, we have P s

z = 0:
Oz + tDs

z = 0 (2)

hence,

t = −Oz

Ds
z

(3)

substitute t into Eq. (1): 
P s

x = Ox − Oz

Dz
Ds

x

P s
y = Oy − Oz

Dz
Ds

y

P s
z = 0

(4)

Now, to determine P s
x and P s

y , we need to further explore the camera position
O and ray direction Dstandpoint. The camera position O in the world coordinate
system is determined with:

O = −RTT (5)

where R and T are the rotation matrix and translation matrix that map the
object from the world coordinate to the camera coordinate, and −RTT is a 3×1
matrix.

Next, to get the direction from the camera center to the standing point
Dstandpoint of the ray, we need to find the correlation between the ray and the
world coordinates systems. We first determine the ray direction inside the cam-
era, which is to define the ray that starts from the camera origin to the pixel
coordination system, and furthermore, we translate the ray from the pixel coor-
dinate system to the camera coordinates system using the intrinsic matrix, and
finally, we project the origin-to-camera ray to an origin-to-world one. Assume
the standing point in the pixel coordinate system is marked as [us, vs] and the
camera has the intrinsic matrix k as:

k =

fx 0 cx
0 fy cy
0 0 1

 (6)
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where fx, fy represent the focal length in x, y direction, cx, cy are the translation
between camera coordinates systems and pixel coordinate systems. We could now
define the standing point in the camera coordinate system [Xs

cam, Y s
cam, Zs

cam]
with the following derivation:

Zs
cam

us

vs

1

 = [K|0]


Xs

cam
Y s

cam
Zs

cam
1

 (7)

=

fx 0 cx 0
0 fy cy 0
0 0 1 0



Xs

cam
Y s

cam
Zs

cam
1

 (8)

⇒


Zs

camus = Xs
camfx+ Zs

camcx

Zs
camvs = Y s

camfy + Zs
camcy

Zs
cam = Zs

cam

(9)

⇒


Xs

cam =
Zs

cam(us−cx)
fx

Y s
cam =

Zs
cam(vs−cy)

fy

Zs
cam = Zs

cam

(10)

We observe that Zs
cam is still unknown. However, since the calculation target

is the ray direction, which is not affected by the length of the ray, we divide
the Zs

cam in each line on the right of the equations to obtain the normalized
origin-to-camera direction Do2c, denoted as:

Do2c =

Xs
cam

Y s
cam

Zs
cam

 =

us−cx
fx

vs−cy
fy

1

 (11)

Finally, we project the origin-to-camera ray direction to the origin-to-world di-
rection using the inverse of rotation matrix M ( [5]). Therefore the final origin-
to-world direction Dstandpoint is represented as:

Dstandpoint =

Ds
x

Ds
y

Ds
z

 = Do2c ·M−1 =

us−cx
fx

vs−cy
fy

1

 ·M−1 (12)

With O,Dstandpoint, P s
z , P

s
y in Eq. (1) can be determined. We now know the exact

3D world coordinate Pstandpoint = [P s
x , P

s
y , P

s
z ]

T of the standing point. Lastly, we
project the standing point Pstandpoint to the camera coordinate system using the
extrinsic matrix to obtain [Xs

cam, Y s
cam, Zs

cam] in which Zs
cam is not divided, and

the Zs
cam value is the depth of the standing point.
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Depth of the head point To calculate the 3D world coordinate of the head, we
leverage the assumption that the head and standing point of the same pedestrian
lie on the same vertical line, therefore, both head and standing point share the
same Px and Py. The actual height in the real world is the calculation target,
and we regard the top of each bounding box as the head of the pedestrian in
each 2D image. Therefore. Recall the definition in Sec. 4, we have:P s

x
P s

y
P s

z

 =

Ox
Oy
Oz

+ t

Dh
x

Dh
y

Dh
z

 i.e.


P h

x = Ox + tDh
x

P h
y = Oy + tDh

y

P h
z = Oz + tDh

z

(13)

In this case, P h
x , Ox, Oy are known and Dh

x can be calculated according to
Eq. (10) - Eq. (12). Thus, the only unknown t can be calculated by substituting
P h

x = P s
x into Eq. (3). Hence, with all the calculated variables, P h

z is obtained.
The depth of the head is then acquired following the same steps as in the depth
calculation for the standing point.

5 Point clouds generation for each ROI area

We fill each localized ROI region with interpolated depth values according to the
calculated depth of the standing point and head. For each pixel in the localized
ROI area, the 3D coordinate(point cloud) Pall = [P a

x , P
a
x , P

a
x ] is obtained with

the following formula: 
P all

x
P all

y
P all

z
1

 =

[
R t
0 1

]-1

4×4

·


Xall

cam

Y all
cam

Zall
cam

1

 (14)

Where 
Xall

cam =
Zall

cam(uall−cx)
fx

Y all
cam =

Zall
cam(vall−cy)

fy

Zall
cam = interpolated depth

(15)

R, t is the rotation and translation matrix of the camera.
We now have the 3D world coordinates(point clouds) for every pixel in a

localized ROI area.

6 The differences in the supplemented dataset.

As shown in Table 1, the additional annotations are highlighted in the Wild-
track+ and MultiviewX+ datasets. In the supplemented dataset, we only added
2D annotations outside the playground (indicated by the blue numbers) without
altering the camera information, ensuring a fair comparison.
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Dataset Type Dataset Number of BBox
(per frame)

Real-World Dataset Wildtrack 15
Wildtrack+ (ours) 49 (+34)

Synthesis Dataset MultiviewX 26
MultiviewX+ (ours) 55 (+29)

Table 1: Average number of Bounding Boxes (BBox) per frame across different
datasets. Blue numbers indicate the additional BBoxes in our enhanced datasets.

7 Limitation and future work

Even though the accuracy drops slightly on the Multiview and MultiviewX+
datasets with more severe occlusion, our methods still have very competitive
performance. Our analysis suggests the reason is inaccurate standing point de-
tection, causing the cardboard human to be poorly constructed. On the one
hand, compared to the Wildtrack dataset, cameras in MultiviewX are placed
lower (1.8 meters in height), which leads to the absence of pedestrian feet when
they are close to the cameras. On the other hand, a high level of occlusions in
MultiviewX also results in missing pedestrian feet. Failure cases are shown in
Fig. 5 in the supplementary materials. Although our method may encounter dif-
ficulties due to the potential invisibility of the standing point, it is noteworthy
that the trained estimator is still able to make reasonable estimations of the
standing location, even when it lies outside the boundaries of the captured im-
age. Additionally, the missing or truncated standing point can be compensated
by other camera views.

There are multiple possible directions along the track of our research in fu-
ture works: First, as discussed above, our method relies too much on pedestrian
detection and keypoint detection. We speculate this problem can be alleviated if
more accurate mapping of the human body from 2D to 3D could be established.
In this regard, existing works in 3D human modeling offer a valuable source of
ideas [2,4]. Second, instead of modeling the scene with explicit point cloud repre-
sentation, it is possible to model the entire 3D space with implicit representation
(NeRF-base methods [5]). This paper offers a brand-new insight that the coarse
but correct reconstruction of scenes can effectively integrate multiview clues and
accurately locate targets. We hope that our findings will motivate the progress
of multiview detection.
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Fig. 6: Label visualization of the Wildtrack+ and MultiviewX+ dataset. For official
Wildtrack and MultiviewX, we use green bounding box and red dot point to visualize
the region of interest (ROI). For the Wildtrack+ and MultiviewX+ we proposed, we
additionally annotate the pedestrians outside the detection area (bounded by purple
lines). The supplementary labels are painted as blue bounding boxes and yellow dot
point.
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Fig. 7: Detection results on Wildtrack and MultiviewX dataset. Ground truth includ-
ing standing points and bounding boxes are labeled by yellow color. And the detection
results are labeled by blue color.


