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A.1 List of prompts

We provide the list of prompts that are used to guide the diffusion model to
generate diverse background changes, encompassing different distribution shifts
with respect to the original data distribution.
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Table 6: Prompts used to create background alterations

Background Prompts
Class label "This is a picture of a class name"
BLIP-2 Caption Captions generated from BLIP-2 image to caption
Colorprompt-1 "This is a picture of a vivid red background"
Colorprompt-2 "This is a picture of a vivid green background"
Colorprompt-3 "This is a picture of a vivid blue background"
Colorprompt-4 "This is a picture of a vivid colorful background"
Textureprompt-1 "This is a picture of textures in the background"
Textureprompt-2 "This is a picture of intricately textured background"
Textureprompt-3 "This is a picture of colorful textured background"
Textureprompt-4 "This is a photo of distorted textures in the background"
Adversarial Captions generated from BLIP-2 image to caption.

A.2 Algorithm

We provide the algorithm (Algo. 1) for our approach of generating adversarial
backgrounds by optimizing the textual and visual conditioning of the diffusion
model. We also tried to optimize only the conditional embeddings or the latent
embeddings, but achieve better attack success rate by optimizing both. Note that
for crafting adversarial examples on COCO-DC we use ImageNet trained ResNet-50
classifiers and our adversarial objective is to maximize the feature representation
distance between clean and adversarial samples. Furthermore, for introducing
desired non-adversarial background changes using the textual description T ′

,
the optimization of the latent and embedding is not needed.
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Algorithm 1 Background Generation
Require: Conditioning module C, Diffusion model ϵθ, Autoencoder V, CLIP text en-

coder ψCLIP, image I, class label y, classifier Fϕ, denoising steps T , guidance scale
λ, attack iterations N , and learning rate β for AdamW optimizer A.

1: Get the textual and visual conditioning from the image I

C(I,y) = TB,M

2: Modify TB to T for desired background change.
3: Map the maskM and image I to latent space: i,m← VENC(I,M)
4: Get the embedding of the textual discription T : eT ← ψCLIP(T )
5: Randomly initialize the latent zT
6: Get the denoised latent zt at time step t.
7: for n ∈ [1, 2, . . . N ] do
8: for t ∈ [t, t+ 1, . . . T ] do
9: ϵ̂tθ(zt, eT , i,m) = ϵtθ(zt, i,m) + λ

(
ϵtθ(zt, eT , i,m)− ϵtθ(zt, i,m)

)
10: From noise estimate ϵ̂θ get zt−1.
11: end for
12: Project the latents to pixel space: Iadv ← VDEC(z0)
13: Compute Adversarial Loss:

Ladv = LCE(Fϕ(Iadv),y)

14: Update zt and eT using A to maximize Ladv:

zt, eT ← A (∇ztLadv,∇eT Ladv)

15: end for
16:
17: Generate Adversarial image Iadv using updated zt and eT .

A.3 Object Distortion in LANCE

In [44], LANCE method is proposed, which is closely relevant to our approach.
LANCE leverages the capabilities of language models to create textual prompts,
facilitating diverse image alterations using the prompt-to-prompt image edit-
ing method [22] and null-text inversion [41] for real image editing. However,
this reliance on prompt-to-prompt editing imposes constraints, particularly lim-
iting its ability to modify only specific words in the prompt. Such a limitation
restricts the range of possible image transformations. Additionally, the global
nature of their editing process poses challenges in preserving object semantics
during these transformations. In contrast, our method employs both visual and
textual conditioning, effectively preserving object semantics while generating
varied background changes. This approach aligns well with our goal of study-
ing object-to-background context. We use open-sourced code from LANCE to
compare it against our approach both quantitatively and qualitatively. We use a
subset of 1000 images, named ImageNet-B1000, for comparison. We observe that
our natural object-to-background changes including color and texture perform
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favorably against LANCE, while our adversarial object-to-background changes
perform significantly better as shown in the Table 1. Since LANCE relies on
global-level image editing, it tends to alter the object semantics and distort the
original object shape in contrast to our approach which naturally preserves the
original object and alters the object-to-background composition only. This can
be observed in qualitative examples provided in Figures 9 and 10. We further
validate this effect by masking the background of original and LANCE-generated
counterfactual images. As reported in Table 7, when the background is masked in
LANCE-generated counterfactual images, overall accuracy drops from 84.35% to
71.57%. This drop in accuracy compared to original images with masked back-
ground, shows that the LANCE framework has distorted the original object
semantics during optimization. In contrast to this, our proposed approach al-
lows us to study the correlation of object-to-background compositional changes
without distorting the object semantics.

We calculate the FID score by comparing the background changes applied
on our ImageNet-B dataset with the original ImageNet val. set (Tab. 8). Our
background modifications such as Class Label, BLIP Caption, & Color achieve
FID scores close to the original images, while our more complex background
changes (Texture, Adversarial) show significant improvement over related works
[44,61].

Table 7: Performance evaluation and comparison on ImageNet-B1000 dataset. The
drop in accuracy of LANCE dataset when the background is masked clearly highlight
the image manipulation being done on the object of interest.

Dataset Masked Background

ViT-T ViT-S Swin-T Swin-S Res-50 Res-152 Dense-161 Average

Original 70.5 86.1 84.2 87.6 87.2 91.2 83.7 84.35

LANCE 59.5 72.5 72.3 75.3 71.9 77.5 72.0 71.57

Table 8: FID comparison (lower is better).

LANCE [44] BG [61] Material [61] Texture [61] Ours: Class BLIP Color Texture Adv
88.51 68.99 120.18 132.28 35.05 30.98 31.65 45.11 67.57
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A.4 Qualitative Comparison with Related Works

Original

LANCE

Ours

Fig. 9: Background Compositional changes on ImageNet-B1000 dataset using LANCE
and our method. LANCE fails to preserve object semantics, while our method exclu-
sively edits the background.
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Original

LANCE

Ours

Fig. 10: Background Compositional changes on ImageNet-B1000 dataset using LANCE
and our method. LANCE fails to preserve object semantics, while our method exclu-
sively edits the background.

LANCE λ = −20 λ = 20 λadv = 20 Blur Noise

Original Class Label BLIP-2 Color Texture Adversarial

Fig. 11: Qualitative comparison of our background changes (bottom row) with previous
related work (top row). Our method enables diversity and controlled background edits.



ObjectCompose 25

A.5 Ablation on Background Changes

In this section, we report results on ImageNet-B and COCO-DC for uni-modal
classifiers in Table 9 and Table 10 reports zero-shot classification results on
ImageNet-B. Furthermore, ablations across diverse color and texture prompts is
provided in Table 11 and 12.

Table 9: Resilience of Transformer and CNN models trained on ImageNet and COCO
training sets against our proposed object-to-background context variations. We report
top-1 (%) accuracy. We observe that CNN-based models are relatively more robust
than Transformers.

Datasets Background
Transformers CNN

ViT-T ViT-S Swin-T Swin-S Res-50 Res-152 Dense-161 Average

ImageNet-B

Original 96.04 98.18 98.65 98.84 98.65 99.27 98.09 98.25
Class label 92.82 94.75 96.18 96.55 97.24 97.56 95.8 95.84(-2.41)
BLIP-2 Caption 86.77 90.41 92.71 93.60 94.46 95.35 91.62 92.13(-6.12)
Color 70.64 84.52 86.84 88.84 89.44 92.89 83.19 85.19(-13.06)
Texture 68.24 79.73 81.09 84.41 83.21 87.66 77.29 80.23(-18.02)

ImageNet-B1000
Original 95.01 97.50 97.90 98.30 98.50 99.10 97.20 97.64
Adversarial 18.40 32.10 25.00 31.70 2.00 28.00 14.40 21.65(-75.99)

COCO-DC

Original 82.96 86.24 88.55 90.23 88.55 89.08 86.77 87.21
BLIP-2 Caption 82.69 84.73 86.24 86.95 88.46 86.69 85.01 85.67(-1.54)
Color 55.54 61.04 70.09 72.13 74.97 75.10 66.19 66.66(-20.55)
Texture 52.52 58.82 68.05 70.09 70.71 74.77 63.79 63.99(-23.22)
Adversarial 49.68 55.72 61.93 69.12 55.45 61.13 57.76 58.68(-28.52)

Table 10: Comparative Evaluation of Zero-shot CLIP and Eva CLIP Vision-Language
Models on ImageNet-B and ImageNet-B1000. Top-1(%) accuracy is reported. We find
that Eva CLIP models showed more robustness in all object-to-background variations.

Datasets Background
CLIP

ViT-B/32 ViT-B/16 ViT-L/14 Res50 Res101 Res50x4 Res50x16 Average

ImageNet-B

Original 75.56 81.56 88.61 73.06 73.95 77.87 83.25 79.12
Class label 80.83 84.41 89.41 78.87 79.33 81.94 85.67 82.92(+3.80)
BLIP-2 Captions 69.33 73.66 79.07 67.44 68.70 71.55 75.78 72.22(-6.90)
Color 53.02 63.08 71.42 53.53 55.87 60.05 71.28 61.18(-17.94)
Texture 51.01 62.25 69.08 51.35 53.46 61.10 70.33 59.79(-19.33)

ImageNet-B1000
Original 73.90 79.40 87.79 70.69 71.80 76.29 82.19 77.43
Adversarial 25.5 34.89 48.19 18.29 24.40 30.29 48.49 32.87(-46.25)

Datasets Background
EVA-CLIP

g/14 g/14+ B/16 L/14 L/14+ E/14 E/14+ Average

ImageNet-B

Original 90.80 93.71 90.24 93.71 93.69 95.38 95.84 93.34
Class label 90.48 93.53 90.20 93.47 93.49 94.78 95.18 93.02(-0.32)
BLIP-2 Caption 80.56 85.23 81.88 85.28 86.24 88.13 88.68 85.14(-8.20)
Color 77.25 83.96 76.24 83.63 85.79 88.70 88.33 83.41(-9.93)
Texture 75.93 82.76 74.44 82.56 86.35 87.84 88.44 82.62(-10.72)

ImageNet-B1000
Original 88.80 92.69 89.19 91.10 91.99 93.80 94.60 91.74
Adversarial 55.59 62.49 48.70 65.39 73.59 70.29 73.29 64.19(-27.55)
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Table 11: Performance evaluation of naturally trained classifiers and zero-shot CLIP
models on ImageNet-B. The text prompts used for color and texture changes are pro-
vided in Table 6.

Background Naturally Trained Models
ViT CNN

ViT-T ViT-S Swin-T Swin-S ResNet50 ResNet152 DenseNet Average
Clean 96.04 98.18 98.65 98.84 98.65 99.27 98.09 98.25
Colorprompt-1 76.58 86.43 88.92 91.23 91.08 93.79 86.05 87.72
Colorprompt-2 77.09 87.57 89.33 90.99 90.62 93.40 86.61 87.94
Colorprompt-3 76.80 86.97 88.74 90.99 90.62 93.18 87.41 87.82
Colorprompt-4 70.64 84.52 86.84 88.84 89.44 92.89 83.19 85.19
Textureprompt-1 79.07 87.92 90.17 91.68 91.18 94.42 88.28 88.96
Textureprompt-2 75.29 85.84 87.74 90.32 89.01 93.04 84.77 86.57
Textureprompt-3 67.97 82.54 86.17 87.99 87.99 91.28 82.99 83.85
Textureprompt-4 68.24 79.73 81.09 84.41 83.21 87.66 77.29 80.23

Background CLIP Models
ViT CNN

ViT-B/32 ViT-B/16 ViT-L/14 ResNet50 ResNet101 ResNet50x4 ResNet50x16 Average
Clean 75.56 81.56 88.61 73.06 73.95 77.87 83.25 79.12
Colorprompt-1 58.32 65.54 72.75 57.43 60.92 65.97 73.04 64.49
Colorprompt-2 57.91 67.28 74.44 58.67 60.12 65.9 74.13 65.49
Colorprompt-3 57.27 66.77 74.07 57.89 59.03 66.10 74.06 65.03
Colorprompt-4 53.02 63.08 71.42 53.53 55.87 60.05 71.28 61.18
Textureprompt-1 59.05 68.50 75.67 60.38 61.78 66.99 74.31 66.67
Textureprompt-2 58.60 68.01 74.40 58.29 59.56 66.34 74.67 65.69
Textureprompt-3 52.89 64.30 68.70 53.29 55.35 61.58 69.35 60.78
Textureprompt-4 51.01 62.25 69.08 51.35 53.46 61.10 70.33 59.79

Table 12: Performance evaluation of naturally trained classifiers on COCO-DC dataset.
The text prompts used for color and texture changes are provided in Table 6.

Background ViT CNN

ViT-T ViT-S Swin-T Swin-S ResNet50 Dense-161 Average

Clean 82.96 86.24 88.55 90.23 88.55 86.77 87.21

Colorprompt-1 61.66 65.92 73.38 73.73 75.86 71.6 70.35
Colorprompt-2 64.86 70.01 76.84 77.10 77.81 75.06 73.61
Colorprompt-3 62.64 67.52 73.29 74.09 77.28 73.64 71.41
Colorprompt-4 55.54 61.04 70.09 72.13 74.97 66.19 66.66

Textureprompt-1 67.96 70.36 75.42 78.70 79.94 73.55 74.32
Textureprompt-2 63.97 69.56 74.62 77.72 78.97 75.15 73.33
Textureprompt-3 52.52 58.82 68.05 70.09 70.71 63.79 63.99
Textureprompt-4 56.16 61.57 66.72 70.18 69.56 67.25 65.24
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A.6 Evaluation on Adversarially Trained models

In this section, we evaluate adversarially trained Res-18, Res-50, and Wide-
Res-50 models across background changes induced by our methods and baseline
methods (See Table 13, 14, and 15).

Table 13: Performance evaluation and comparison of our dataset with state of the
art methods on adversarially trained Res-18 models. The images are generated on
ImageNet-B1000 dataset. We report top-1 average accuracy of models trained on various
adversarial budget.

Datasets ℓ∞ ℓ2

ε=0.5 ε=2.0 ε=4.0 ε=8.0 ε=0.5 ε=2.0 ε=4.0 ε=8.0

Original 88.00 78.30 69.70 54.40 84.60 81.40 68.80 57.50

ImageNet-E (λ=-20) 84.50 77.01 69.10 54.80 83.40 80.00 68.80 59.00
ImageNet-E (λ=20) 81.41 74.94 66.36 52.52 81.61 75.75 65.65 55.05
ImageNet-E (λadv = 20) 75.15 66.16 56.36 45.35 72.82 66.66 55.75 45.05
LANCE 76.37 66.78 59.13 45.17 74.99 73.19 61.60 48.68

Class label 87.10 79.90 69.40 57.30 85.00 79.90 70.90 57.80
BLIP-2 Caption 80.90 73.10 67.10 51.00 79.50 75.30 63.10 53.40
Color 56.90 45.80 35.40 25.70 53.20 46.80 32.80 23.40
Texture 59.20 47.10 38.60 28.70 54.30 48.10 35.50 26.20
Adversarial 12.10 19.80 24.60 26.80 10.90 12.40 16.90 17.20

Table 14: Performance evaluation and comparison of our dataset with state of the
art methods on adversarially trained Res-50 models. The images are generated on
ImageNet-B1000 dataset. We report top-1 average accuracy of models trained on various
adversarial budget.

Datasets ℓ∞ ℓ2

ε=0.5 ε=2.0 ε=4.0 ε=8.0 ε=0.5 ε=2.0 ε=4.0 ε=8.0

Original 95.20 89.30 83.20 72.40 94.30 91.10 80.90 70.80

ImageNet-E (λ=-20) 93.10 89.20 82.00 70.70 91.70 88.50 79.60 69.10
ImageNet-E (λ=20) 92.52 86.36 80.60 67.97 90.40 86.96 76.26 68.08
ImageNet-E (λadv = 20) 84.44 78.78 71.71 58.58 80.50 76.76 65.75 56.86
LANCE 81.94 78.96 70.11 59.72 83.52 80.46 69.83 61.32

Class label 92.40 88.50 82.70 72.50 90.70 88.60 80.20 70.50
BLIP-2 Caption 87.90 83.70 79.00 67.90 86.60 84.60 73.70 65.70
Color 70.80 60.30 53.20 39.50 67.20 58.50 44.40 34.20
Texture 69.70 61.00 54.60 43.40 64.90 59.70 48.00 37.70
Adversarial 10.80 17.10 18.10 16.60 10.70 11.90 14.70 13.40
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Table 15: Performance evaluation and comparison of our dataset with state of the
art methods on adversarially trained Wide Res-50 models. The images are generated
on ImageNet-B1000 dataset. We report top-1 average accuracy of models trained on
various adversarial budget.

Datasets ℓ∞ ℓ2

ε=0.5 ε=2.0 ε=4.0 ε=8.0 ε=0.5 ε=2.0 ε=4.0 ε=8.0

Original 96.20 92.60 89.10 78.70 95.60 94.00 87.00 78.30

ImageNet-E (λ=-20) 94.10 91.10 86.60 76.40 93.20 91.60 84.20 76.90
ImageNet-E (λ=20) 92.82 89.29 83.53 75.15 91.21 88.68 81.11 73.63
ImageNet-E (λadv = 20) 87.17 76.56 66.16 82.92 82.22 82.00 71.41 62.42
LANCE 84.18 81.34 77.07 64.51 83.48 83.09 77.40 66.09

Class label 93.50 90.60 87.30 78.80 92.10 90.80 83.70 75.50
BLIP-2 Caption 90.20 86.20 82.80 74.30 88.90 86.70 80.00 69.20
Color 72.2 66.60 60.70 51.20 68.10 65.10 51.40 40.90
Texture 73.80 66.70 61.70 53.60 67.20 64.60 52.00 44.20
Adversarial 13.90 22.90 28.00 32.00 12.40 15.10 19.50 20.60

A.7 Evaluation on Recent Vision Models

We have conducted experiments on recent transformer CNN based models like
DeiT [57] and ConvNeXt [37], and their results are presented in Table 16. We
observe a consistent trend in model performance on our dataset, revealing that
even the modern vision models are vulnerable to background changes.

Table 16: Performance evaluation on naturally trained classifiers on ImageNet-B and
ImageNet-B1000 dataset. All models exhibit a marked decrease in accuracy when the
background is modified, highlighting their sensitivity to changes in the environment.
The decline in performance is minimal with class label backgrounds but more pro-
nounced with texture and color alterations. The most significant accuracy drop occurs
under adversarial conditions, underscoring the substantial challenge posed by such
backgrounds to the classifiers.

Datasets Background Transformers CNN
DeiT-T DeiT-S DeiT-B Average ConvNeXt-T ConvNeXt-B ConvNeXt-L Average

ImageNet-B

Original 96.36 99.27 99.41 98.34 99.07 99.21 99.40 99.22
Class label 94.18 96.85 97.74 96.25 97.60 97.51 97.51 97.54
BLIP-2 Caption 89.33 94.29 95.07 92.89 94.64 94.82 95.47 94.97
Color 80.96 89.48 91.11 87.13 92.11 93.58 93.58 93.09
Texture 74.15 84.01 86.75 81.63 88.50 89.50 91.13 89.71

ImageNet-B1000 Original 95.44 99.10 99.10 97.88 99.00 99.00 92.92 96.97
Adversarial 20.40 29.62 34.81 28.27 32.88 42.52 48.60 41.33
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A.8 Evaluation on DINOv2 models

Our findings underscore the necessity of training vision models to prioritize dis-
criminative and salient features, thereby diminishing their dependence on back-
ground cues. Recent advancements, such as the approaches by [53] employing a
segmentation backbone for classification to improve adversarial robustness and
by [9] using additional learnable tokens known as registers for interpretable at-
tention maps, resonate with this perspective. Our preliminary experiments with
the DINOv2 models [43], as presented in Table 17, corroborate this hypothe-
sis. Across all the experiments, models with registers (learnable tokens) provide
more robustness to background changes, with significant improvement seen in
the adversarial background changes.

Table 17: Performance comparison of classifiers that are trained different on
ImageNet-B dataset. The DINOv2 model with registers generally shows higher robust-
ness to background changes, particularly in the presence of color, texture and adversar-
ial backgrounds. This suggests that the incorporation of registers in DINOv2 enhances
its ability to maintain performance despite challenging background alterations.

Dataset Background Dinov2 Dinov2registers

ViT-S ViT-B ViT-L Average ViT-S ViT-B ViT-L Average

ImageNet-B

Original 96.78 97.18 98.58 97.51 97.71 98.05 99.14 98.30
Class label 94.62 96.02 97.18 95.94 95.55 96.44 97.94 96.64
BLIP-2 Caption 89.22 91.73 94.33 91.76 90.86 92.10 95.02 92.66
Color 83.85 89.68 93.31 88.94 85.88 91.15 94.64 90.55
Texture 83.63 89.08 92.44 88.38 84.98 91.03 93.97 89.99

ImageNet-B1000 Original 95.12 96.50 98.10 96.57 97.91 97.80 99.00 98.23
Adversarial 54.31 71.62 80.87 68.93 58.30 76.21 84.50 73.00
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A.9 Vision Language model for Image Captioning

Fig. 12: A visual comparison of BLIP-2 captions on clean and generated datasets.
The top row shows captions on clean images, while the bottom row displays captions
on generated images. As background complexity increases, BLIP-2 fails to accurately
represent the true class in the image.

Fig. 13: The figure illustrates the introduction of background variations achieved
through a diverse set of texture and color text prompts
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A.10 Qualitative Results on Detection

Fig. 14: We use diverse prompts to capture the diverse background shifts on samples
from COCO-DC. The figure illustrate a comparison of prediction of Mask-RCNN on
both clean and generated samples on COCO-DC. Each two adjacent rows represents the
prediction of Mask-RCNN on clean (top) and generated images (bottom).
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A.11 Effect of Background Change on Segmentation Models

Figure 15, 16, and 17 provide failure cases of FastSAM to correctly segment the
object in the images where background has been changed in terms of color,
texture, and adversarial, respectively. Since we obtain the object masks for
ImageNet-B using FastSAM, we compare those masks using IoU with the ones
obtained by FastSAM on the generated dataset (see Table 18).

Table 18: IoU distribution of FastSAM. Percentage
of images within an IoU range is reported.

Background 0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0

Class Label 8.10 5.93 8.02 13.03 64.92
BLIP-2 Caption 5.70 4.81 6.92 13.01 69.56
Color 1.65 1.39 2.31 4.99 89.65
Texture 2.11 1.02 1.78 4.07 91.02

Adversarial 4.87 2.91 4.32 10.63 77.27

Table 19: DETR Object de-
tection evaluation on COCO-DC

Background Box AP Recall AR

Original 0.65 0.81
BLIP-2 Caption 0.53 0.76
Color 0.52 0.73
Texture 0.52 0.71
Adversarial 0.42 0.62

Fig. 15: Instances illustrating FastSAM model’s failure to accurately segment masks
for the background color changes on ImageNet-B samples..
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Fig. 16: Instances illustrating FastSAM model’s failure to accurately segment masks
for the background texture changes on ImageNet-B samples.

Fig. 17: Instances illustrating FastSAM model’s failure to accurately segment masks
for the adversarial background changes on ImageNet-B1000 samples.
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A.12 Exploring Feature Space of Vision Models

In Figure 18 and 19, we explore the visual feature space of vision and vision
language model using t-SNE visualizations. We observe that as the background
changes deviate further from the original background, a noticeable shift occurs
in the feature space. The distinct separation or clustering of features belonging
to the same class appears to decrease. This observation suggests a significant
correlation between the model’s decision-making process and the alterations in
the background. Furthermore, we also show the GradCAM [50] on generated
background changes. We observe that diverse background changes significantly
shift the attention of the model as can be seen from Figure 20 and 21.

Fig. 18: t-SNE visualization of classifier models on ImageNet-B dataset.
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Fig. 19: t-SNE visualization of CLIP Vision Encoder features on ImageNet-B dataset.
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Fig. 20: GradCAM [50] visualization of adversarial and BLIP-2 background examples.
The activation maps were generated on ImageNet pre-trained Res-50 model.

Fig. 21: GradCAM [50] visualization of texture and color background changes. The
activation maps were generated on ImageNet pre-trained Res-50 model.
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A.13 Diversity and Diffusion parameter ablation

In this section, we qualitatively analyze the diversity in visual results of the dif-
fusion model. In Figure 22, we show that keeping textual and visual guidance
fixed, the diffusion model is still able to generate diverse changes with similar
background semantics at different seeds for the noise zT . Furthermore, we explore
the diversity in generating realistic background changes across an original im-
age by using diverse class agnostic textual prompts, capturing different realistic
backgrounds. Figure 23 and 24 show some of the qualitative results obtained on
ImageNet-B samples using prompts generated from ChatGPT). Furthermore, we
show the visual examples of color, texture, and adversarial attack on ImageNet-B
dataset in Figure 25, 26, and 27. We also provide a visualization in Figure 28
showing the effect of changing diffusion model parameters.

Fig. 22: In this figure, examples are generated using BLIP-2 captions by altering the
seed from left to right in the row. This highlights the high diversity achievable with
the diffusion model when employing different starting noise latents.
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Fig. 23: Using diverse prompts to capture for diverse background shifts on samples
from ImageNet-B.
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Fig. 24: Using diverse prompts to capture for diverse background shifts on samples
from ImageNet-B.
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Fig. 25: Images generated through diverse color prompts on ImageNet-B.
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Fig. 26: Images generated through diverse texture prompts on ImageNet-B.
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Fig. 27: Images generated under various attack scenarios on ImageNet-B1000. Here we
show the visualization for latent, prompt, and ensemble attack that are generated by
optimizing latent, text prompt embeddings, and both respectively.
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Fig. 28: Visualization on samples taken from ImageNet-B. Varying parameters like
guidance, strength, and denoising steps while using BLIP-2 caption as the prompt. In-
creasing guidance leads to more fine-detailed background changes. Additionally, greater
strength correlated with more pronounced alterations from the original background.
And, augmenting diffusion steps improves image quality.
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A.14 Misclassified Samples

We observe that there exist images which get misclassified (by ResNet-50) across
several background alterations as can be seen from from Figure 29. In Figure
30 we show examples on which the highly robust EVA-CLIP ViT-E/14+ model
fails to classify the correct class. After going through the misclassified samples,
we visualize some of the hard examples in Figure 32. Furthermore, we also pro-
vide visualisation of images misclassified with adversarial background changes
in Figure 31.

Fig. 29: Images misclassified by Res-50 across different background changes
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Fig. 30: Visual illustration of misclassified samples on color background and corre-
sponding clean image samples. In two adjacent rows, first row represent the clean
images and the second row represent the corresponding colorful background images
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Fig. 31: Visual illustration of misclassified samples on adversarial background and
corresponding clean image samples. In two adjacent rows, first row represents the
clean images and the second row represents the corresponding adversarial images
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Fig. 32: Visual illustration of hard samples on color background

A.15 Potential External Factors

When composing object-to-background change with texture, color, or adversarial
patterns, the target models can perceive those as some other class if that pat-
tern or composition is dominant in that class during the training of the models.
We discuss the potential external factors and how our proposed method mini-
mizes the effect of those external factors fo object-to-background compositional
changes.
Preserving Object Semantics: We preserve object semantics by using strong
visual guidance via SAM for precise object delineation.
Possibility of extra objects in the Background: Kindly note that a) we
use a pretrained diffusion model that is conditioned on a pretrained CLIP text
encoder, this means that the generated output follows the latent space of the
CLIP text encoder which is aligned with CLIP visual encoder. Therefore, we
can measure the faithfulness of the generated sample w.r.t the textual prompt
used to generate it. We can measure this by encoding the generated output and
its corresponding text prompt within CLIP latent space. For a given sample,
CLIP or EVA-CLIP performs zero-shot evaluation by measuring the similarity
between embedding of class templates (e.g. 1000 templates of ImageNet class)
with a given image. Thus, if we add the template for a textual prompt used
to generate the object-to-background changes, then we can measure its align-
ment with the background changes. For instance, instead of using a “a photo
of a fish” template for zero-shot classification, we add the relevant template
that is with background change, such as “a photo of a fish in the vivid colorful
background”. In other words, the relevant template represents the object and
background change we introduced. We validate this observation on the EVA-
CLIP ViT-E/14+, a highly robust model. Using the class templates such as
“a photo of a ”, the model achieves 95.84% accuracy on the original images
(ImageNet-B dataset), which decreases to 88.33% when our color background
changes are applied (see Table 10 in Appendix A.5). However, when using the
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relevant template, the performance improves to 92.95%, significantly reducing
the gap between the performance on the original and color background changes
from 7.51% to 2.89%. These results show that accuracy loss from background
changes isn’t due to unwanted background objects of other classes. Furthermore,
we manually assess 2.89% of misclassified samples (very few samples, see Figure
30 and 32 in Appendix A.14). These can be considered the hardest examples in
our dataset. We observe that even in such hard cases the model’s confusion often
stemmed from the complex background patterns instead of the addition of un-
wanted objects. We observe a similar trend in the case of adversarial patterns as
well (see Figure 31 in Appendix A.14). b) Another empirical evidence of how our
generated output closely follows the given textual prompts can be observed with
BLIP-2 Caption of the original image. In this case, object-background change
has similar results as compared to original images across different vision models
(Table 2 in the main paper).
Extension of Objects: As already detailed in Appendix A.18, we encountered
challenges when dealing with objects that occupy a small region in the image,
sometimes leading to certain unwanted extensions to objects. To mitigate this,
we filtered our dataset to focus on images where the object covers a significant
area. Additionally, we slightly expand object masks computed using SAM to
better define boundaries and prevent object shape distortion in the background.

The design choices discussed above, such as strong visual guidance and class-
agnostic textual guidance, contribute to the well-calibrated results of our study.
This indicates that our results using the conventional metrics such as classifi-
cation accuracy are well calibrated as well in the context of our high quality of
generated data as mentioned above. We note that these choices ensure that the
models are primarily challenged by diverse changes in the background, rather
than being misled by the presence of unwanted objects. This careful approach
underlines the reliability of our findings and highlights the specific factors influ-
encing model performance.

A.16 Dataset Distribution and Comparison

ImageNet-B dataset comprises a wide variety of objects belonging to different
classes, as illustrated in Figure 33. Our dataset maintains a clear distinction be-
tween the background and objects, achieved through a rigorous filtering process
applied to the ImageNet validation dataset. Additionally, we provide the list of
prompts in Table 6 utilized for the experiments.

As shown in Tab. 20, our curated ImageNet-B dataset is the largest in
terms of both the number of images and classes compared to closely related
works [34, 44, 61]. In contrast to [34, 44, 61], we extend our analysis to object
detection by introducing the COCO-DC dataset. Our proposed background
changes on ImageNet-B & COCO-DC, enable us to evaluate on more than
70k samples for classification & 5k samples for detection. Our automated frame-
work of delineating between foreground & background facilitates future dataset
expansion.
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Fig. 33: Our ImageNet-B dataset encompasses a diverse variety of images spanning
582 distinct classes. In this illustration, we showcase images distribution among all the
classes. The figure is plotted in decreasing order of images present in each class.

Table 20: Dataset Comparison

Dataset #Classes #Images Classification Detection

Baseline LANCE(NeurIPS 2023) [44] 15 750 ✓ ×
ImageNet-E(CVPR 2023) [34] 373 47872 ✓ ×
ImageNet-D(CVPR 2024) [61] 113 4835 ✓ ×

Ours ImageNet-B 582 77070 ✓ ×
COCO-DC 66 5635 ✓ ✓

A.17 Evaluation on Background/Foreground Images

In this section, we systematically evaluate vision-based models by focusing on
background and foreground elements in images. This evaluation involves masking
the background of the original image, allowing us to assess the model’s perfor-
mance in recognizing and classifying the foreground without any cues from the
background context. Conversely, we also mask the object or foreground from
the image. This step is crucial to understand to what extent the models rely on
background information for classifying the image into a specific class. This dual
approach provides a comprehensive insight into the model’s capabilities in image
classification, highlighting its reliance on foreground and background elements.
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Table 21: Evaluation of Zero-shot CLIP Models on ImageNet-B dataset while masking
the object or the background of the image. Top-1(%) accuracy is reported. The accuracy
drop is observe when we remove the object clues from the background such as in texture
or color background

Background Foreground

Res50 Res101 Res50x4 Res50x16 ViT-B/32 ViT-B/16 ViT-B/14 Average

Original 54.76 58.89 64.86 70.80 59.47 69.42 79.12 65.33
Background

Original 15.84 17.74 18.47 20.67 17.72 21.28 28.99 20.10
Class label 27.17 29.08 33.02 35.93 31.35 38.74 46.88 34.59
BLIP-2 Caption 19.05 21.39 23.37 24.57 22.39 27.21 34.42 24.62
Color 3.92 5.46 5.64 6.53 5.64 6.95 10.28 6.34
Texture 3.65 5.12 5.12 5.84 5.43 6.68 10.04 5.98

Table 22: DINOv2 model evaluation by masking either the object or the background
within the ImageNet-B dataset. The integration of the additional token in the DINOv2
model proves beneficial, contributing to enhanced accuracy. However, our observations
reveal that these models remain susceptible to background cues, particularly evident
in class labels and the BLIP-2 Caption dataset. Interestingly, as we transition towards
more generic texture or color backgrounds, a discernible drop in accuracy is observed.

Background Foreground

ViT-S ViT-B ViT-L Average ViT-Sreg ViT-Breg ViT-Lreg Average

Original 88.73 93.86 94.89 92.49 96.34 89.95 97.25 94.51
Background

Original 27.72 37.78 51.44 38.98 30.10 42.08 55.18 42.45
Class label 42.70 54.73 66.68 54.70 46.88 58.81 68.97 58.22
BLIP-2 Caption 30.51 40.74 50.57 40.60 33.62 42.48 52.40 42.83
Color 2.96 5.03 8.39 5.46 3.68 5.75 9.50 6.31
Texture 2.83 4.92 7.88 5.21 3.45 5.57 9.28 6.10

A.18 Insights

Across Architectures. Our results (Tab. 1,2, 3, & 16) show that CNNs per-
form better than transformers across various background changes. We note that
the mixing of background & foreground token features through the global at-
tention mechanism may result in the reliance of transformer models prediction
on outlier/background tokens. This is validated when we evaluate transformers
which are trained to prioritize learning more salient features [9] (Tab. 17 & 22),
resulting in improved performance under background changes.
Across Training Methods. Analysis of adversarially trained models (Fig. 6
& Tab. 13, 14, 15) reveal their robustness is confined to adversarial background
changes, leaving them vulnerable to other background variations. Similar be-
havior is observed for models trained on stylized ImageNet dataset(Tab. 3).
However, self-supervised training of uni-modal models on large extensively cu-
rated datasets shows performance gain across background changes(Fig. 7). Simi-
larly, for multi-modal models, we observe that stabilizing training on large-scale
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datasets (as in EVA-CLIP) leads to significant improvement in zero-shot perfor-
mance across all background changes(Tab. 2,10, & 11).
Across Vision Tasks. The absence of object-to-background context during
classification model training creates a significant vulnerability to background
changes. In contrast, object detection & segmentation models (Tab. 5, Fig. 8 &
14), which explicitly incorporate object-to-background context during training,
show notably better resilience to background variations. Based on the above
insights, we discuss current limitations and future directions next.

Limitations. In Figure 34, we observe that for objects covering a small region
in the image, relying solely on the class name to guide the diffusion model can
result in alterations of the object shape, expanding the influence of the class name
semantics to larger image regions. However, by supplementing with descriptive
captions that encompass the object-to-background context, we partially mitigate
this effect. Furthermore, the generated textured background can inadvertently
camouflage the object. To address this concern, we slightly expand the object
mask to clearly delineate the object boundaries.

Fig. 34: Limitation: Background changes on small objects in the scene. Enlarging the
mask (here by 6 pixels) helps in mitigating the issue to some effect.

Future Directions. Our current work represents one of the preliminary efforts
in utilizing diffusion models to study the object-to-background context in vision-
based systems. Based on our observations and analysis, the following are the
interesting future directions.

– Since large capacity models in general show better robustness to object-
to-background compositions, coming up with new approaches to effectively
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distill knowledge from these large models could improve how small models
cope with background changes. This can improve resilience in small models
that can be deployed in edge devices.

– Another direction is to set up object-to-background priors during adversarial
training to expand robustness beyond just adversarial changes. To some
extent, successful examples are recent works [9,53] where models are trained
to discern the salient features in the image foreground. This leads to better
robustness.

– Our work can be extended to videos where preserving the semantics of the
objects across the frames while introducing changes to the background tem-
porally will help understand the robustness of video models.

– Additionally, the capabilities of diffusion models can be explored to craft
complex changes in the object of interest while preserving the semantic in-
tegrity. For instance, in [59], diffusion models are employed to generate mul-
tiple viewpoints of the same object. Additionally, in [28], non-rigid motions
of objects are created while preserving their semantics. By incorporating
these with our approach, we can study how vision models maintain semantic
consistency in dynamic scenarios.

A.19 Calibration Metrics

Model calibration refers to how well a model’s predicted confidence levels corre-
spond to its actual accuracy. Confidence represents the probability a model as-
signs to its predictions, while accuracy measures how often those predictions are
correct. For example, if a model predicts with 70% confidence, a well-calibrated
model should have an actual accuracy close to 70%. To quantify this, we use the
Expected Calibration Error (ECE). ECE works by dividing the predictions into
M bins based on confidence intervals (e.g., 60%-70%, 70%-80%). Within each
bin, the average confidence and accuracy are calculated, and the ECE is the
weighted average of the differences between these values. To visually evaluate
model calibration, reliability diagrams are used. These diagrams plot predicted
confidence against actual accuracy, allowing us to compare different models. A
well-calibrated model will show points that lie close to the diagonal on these
plots. In Figures 35 and 36, we plot the reliability diagrams for different convo-
lutional and transformer-based models, respectively.
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Fig. 35: Calibration results comparison of CNN-based models.
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Fig. 36: Caliberation results comparison of ViT model
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A.20 Ablation on Adversarial Loss

Tab.23 presents an ablation study on adversarial loss, showing optimizing both
vision & text based emebedding, leads to the most performance drop.

Table 23: Ablation on different losses

ViT-T ViT-S Swin-T Swin-S Res-50 Res-152 Dense-161 Average

Text 28.4 46.5 40.9 47.2 19.0 46.5 31.5 37.1
Latent 32.3 47.5 42.8 50.2 1.6 44.5 26.4 35.1
Combined 18.4 32.1 25.0 31.7 2.0 28 14.4 21.6

A.21 Reproducibility and Ethics Statement

Reproducibility Statement: Our method uses already available pre-trained
models and the codebase is based on several open source implementations. We
highlight the main components used in our framework for reproducing the results
presented in our paper, a) Diffusion Inpainting Implementation: We use
the open-source implementation of Stable-Diffusion-Inpainting method (https:
//github.com/huggingface/diffusers/blob/main/src/diffusers/) with
available pretrained weights (Stable-Diffusion-v-1-2) for background generation.
b) Image-to-Segment Implementation: We use the official open-source im-
plementation of FastSAM (https://github.com/CASIA-IVA-Lab/FastSAM)
to get the segmentation masks of filtered ImageNet dataset. c) Image-to-Text
Implementation: We use the official open-source implementation of BLIP-2(https:
//github.com/salesforce/LAVIS/tree/main/projects/blip2) to get the
captions for each image. We will also provide captions for each image in our
dataset. d) Adversarial Attack: We intent to open-source our codebase and
release the script for crafting adversarial examples. e) Dataset: In the paper,
we describe the procedure of filtering the images from ImageNet and COCO val.
set. Furthermore, we will provide the filtered datasets, object masks as well as
prompts used to generate different backgrounds.

Ethics Statement: Our work focuses on evaluating resilience of current
vision and language models against natural and adversarial background changes
in real images. This work can be utilized by an attacker to generate malicious
backgrounds on real images as well as generate adversarial backgrounds which
can fool the deployed computer-vision systems. Nevertheless, we believe that
our research will pave the way for improved evaluation protocols to assess the
resilience of existing models. This, in turn, is likely to drive the development of
enhanced techniques for bolstering the resilience of deployed systems. Since we
are benchmarking vision and vision-language models using a subset of images
from publicly available ImageNet and COCO datasets, it’s relevant to mention
that these datasets are known to have images of people which poses a privacy risk
and further it is known to have biases which can encourage social stereotypes.

https://github.com/huggingface/diffusers/blob/main/src/diffusers/
https://github.com/huggingface/diffusers/blob/main/src/diffusers/
https://github.com/CASIA-IVA-Lab/FastSAM
https://github.com/salesforce/LAVIS/tree/main/projects/blip2
https://github.com/salesforce/LAVIS/tree/main/projects/blip2


ObjectCompose 55

In the future, we intend to benchmark our models on a less biased dataset to
mitigate these concerns and ensure a fair evaluation.


