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A1 Extended Ablation Studies

A1.1 Generalization of the Proposed Method to Other Models with
Different Pretraining Paradigms

To evaluate the models generalizability of our proposed method towards dif-
ferent pretraining paradigms, we conduct additional experiments using weakly-
supervised pretrained models of CLIP [5] and supervised pretrained models of
DeiT III [6]. We follow the same experimental protocols outlined in our paper.
We use publicly available pretrained models in our experiments (CLIP base1,
CLIP large2, DeiT III base3, DeiT III large4). We set θ to 2.0 for all CLIP mod-
els, 2.7 for DeiT III base model and 3.25 for DeiT III large model. Note that
since DeiT III was trained for ImageNet-1k, to preserve zero-shot generalization
discussion, we select only CIFAR-10 and CIFAR-100 for evaluation in the case
of DeiT III. The results of both clustering and k-NN classification are shown in
Tab. A1. For CLIP models, the performance improves mostly with our method,
similar to the results observed with DINOv2. For DeiT III, there is no obvious
performance improvement, which aligns with the findings from the linear evalu-
ation in Table 2 of Ref. [1]. Ref. [1] stated that pretraining paradigm seems to
play a role in the characteristics of artifacts as CLIP and DeiT-III show arti-
facts at sizes smaller than DINOv2. We speculate that the supervised nature of
DeiT III overfits the models to a particular dataset, decreasing the potential of
performance extension during inference-time attention manipulation. We further
analyzed the L2 norms distribution in CLIP and DeiT-III models and found that
ITAE successfully identified and attenuated artifacts, similar to DINOv2. We did
not test registers and registers + ours settings as pretrained CLIP and DeiT III
1 https : / / openaipublic . azureedge . net / clip / models /
5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-
16.pt

2 https : / / openaipublic . azureedge . net / clip / models /
b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-
14.pt

3 https://dl.fbaipublicfiles.com/deit/deit_3_base_224_21k.pth
4 https://dl.fbaipublicfiles.com/deit/deit_3_large_224_21k.pth

https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt
https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt
https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt
https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt
https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt
https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt
https://dl.fbaipublicfiles.com/deit/deit_3_base_224_21k.pth
https://dl.fbaipublicfiles.com/deit/deit_3_large_224_21k.pth
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models with registers are not publicly available. However, we speculate that the
complementary synergy between our method and registers [1] will enhance these
models.

A1.2 Comparative Evaluation of Artifacts Attenuation Strategies

In our proposed method, as described in Sec. 3 of the paper, after the artifacts
are identified, the corresponding attention values are attenuated to the mini-
mum value of the patches in each head. Other strategies of attenuation can be
considered. In this section, we examine three strategies: (a) Replacing artifacts
with −∞ (-infinity), (b) replacing artifacts with the average value of attention
1
N

∑
j

(
(QKT )0j

)
(average), (c) replacing artifacts with the minimum value of

attention, minj
(
(QKT )0j

)
(minimum), as implemented in our paper. Table A2

shows the accuracy of each of the three strategies. average outperforms other
strategies in STL-10 for ViT-L/14 distilled and ViT-g/14. However, in the cases
of CIFAR-100 and Tiny ImageNet for ViT-g/14, it falls below the accuracy of
the original, and can be considered unstable. The results of the remaining two
strategies are not so different, but minimum as implemented in our proposed
method is slightly more accurate for more cases. There are many other possible
variations of the attenuation strategies, but the fact that artifacts attenuation
outperforms the original model in accuracy in almost all cases in this study in-
dicates that attenuating attention values is effective to some extent, regardless
of the specific value used for substitution.

A1.3 Comparative Evaluation with LSA

Locality Self-Attention (LSA) introduced temperature scaling and diagonal mask-
ing of the attention matrix to improve local induction bias [3]. We implemented
the same diagonal masking of LSA, but only at inference time and only for
the final layer of the model to conform with our framework. Table A3 shows
the accuracy of LSA, our method and the original model. When comparing to
the original model, LSA is effective for ViT-g/14 and ViT-L/14 distilled, but
its accuracy does not clearly improve for ViT-B/14 distilled. LSA also achieves
lower accuracy than our method in more cases. In this evaluation, we also in-
vestigate the combination of our method with LSA, denoted as LSA + ours in
Tab. A3. The results show that combination with our method improved accuracy
in models where LSA was effective. We speculate that while adopting the LSA
alone increases the value of artifacts’ attention, combining LSA with our method
manages to increase the effective attention manipulated by LSA. Because of the
complementary relationship between our method and LSA, we believe that the
simultaneous adoption of both methods results in the greatest improvement in
accuracy.

A1.4 Comparative Evaluation of Artifacts Identification Strategies

In Sec. 4 of the paper, we employ the L2 norms of the query as QKV patches
to identify the artifact. However, it is also possible to utilize the L2 norms of
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Fig.A1: t-SNE visualization: The left map is the output feature map of original model
and the right map is the feature map of the model incorporating our proposed method.
For our method in this visualization, we set θ = 3.5 as obtained from Sec. 5.2 of the
paper for better representing the potential of our method. Colors indicate true labels of
image data points. Feature map of our proposed method shows fewer breakaway data
points. Best viewed in color (model: ViT-B/14 distilled, dataset: CIFAR-10).

the key or value patches, as described in Sec. 3. Moreover, in prior work, ar-
tifacts were identified by the L2 norms of the final output patch tokens of the
model [1]. In this section, we discuss these other strategies of artifacts identifica-
tion. The results of clustering are shown in Tab. A4 after identifying the artifacts
by a threshold value θ for each model from the histogram of L2 norms of each
strategy. From the result, we observe that the method using output has a high ac-
curacy in ViT-g/14. However, the clustering accuracy is not stable in ViT-B/14
distilled. As described in Sec. 3, the histogram obtained from the L2 norms of
output exhibits unclear bimodality. Hence, there is difficulty in determining an
appropriate threshold for identifying artifacts. Also, there is a disadvantage in
terms of computational cost when computing artifacts from the output as a back
pass loop from the output of the model is needed. For comparison between uti-
lizing query, key, and value, we observe that the accuracy of key, like the output,
is not stable for ViT-B/14 distilled, although to a lesser extent. value and query
have almost the same level of accuracy. Therefore, for the sake of clarity, we
mainly utilized query in our experiments.

A1.5 Output Feature Representation Visualization

Figure A1 shows the t-SNE [4] visualization of the output features for the origi-
nal model and model incorporating our proposed method by using the dataset of
CIFAR-10. For the image clustering of CIFAR-10 with ViT-B/14 model, experi-
ment using the original model has a clustering accuracy of 83.63, which improves
to 84.49 for θ = 3.0 and 84.86 for θ = 3.5 by applying our proposed method.
It is observed that feature map of our proposed method shows fewer breakaway
data points. To quantify this, in the discussion here, we define breakaway points
as data points with a silhouette score smaller than 0, calculated using the true



4 K. Nakamura et al.

labels. For the original model, there are 635 breakaway points out of 10,000 data
points. The number of breakaway points decreases to 569 for θ = 3.0 and 535 for
θ = 3.5. These improvements in output features’ quality enhance the subsequent
image clustering accuracy.

A2 Limitation

A2.1 Limitations on Data

Because this method utilizes a pretrained model and does not involve any re-
training, there is a possibility that clustering may not work well on some highly
specific datasets due to the bias of the pretrained model. However, for the
datasets that we have evaluated, our method proves effective.

A2.2 Limitations on Methodology

Methods without re-training such as our proposed method maybe difficult to
extract performance beyond the potential of the original model. However, algo-
rithms of tuning-free merging of weights from other external models [2, 7] have
been proposed. These methods may provide a complimentary solution to our
method for better performance.

A3 Licence info

Table A5 shows the license info of images used in Fig. 4 of the paper. The images
are overlaid with attention map in the figure.
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Table A1: Clustering & k-NN classification results across various pretraining
paradigms and model sizes (DINOv2 base: ViT-B/14 distilled, DINOv2 large: ViT-
L/14 distilled, CLIP base: ViT-B/16, CLIP large: ViT-L/14, DeiT III base: ViT-B/16,
DeiT III large: ViT-L/16). Clustering results are reported in ACC while k-NN classi-
fication results are reported in standard k-NN classification accuracy.

Dataset Experiment Model Model Size original ours

CIFAR-10 Clustering

DINOv2 base 83.63± 1.13 84.49± 1.19
large 82.16± 1.48 82.49± 1.55

CLIP base 72.34± 0.80 77.47± 1.34
large 79.45± 1.47 79.25± 1.49

DeiT III base 82.54± 3.48 82.89± 1.26
large 84.18± 3.11 84.43± 2.76

CIFAR-100 Clustering

DINOv2 base 64.26± 0.30 65.02± 0.14
large 68.69± 0.34 69.04± 0.22

CLIP base 42.92± 0.22 49.63± 0.25
large 47.88± 0.31 56.94± 0.21

DeiT III base 60.64± 0.57 60.41± 0.22
large 67.19± 0.57 67.16± 0.59

STL-10 Clustering
DINOv2 base 75.65± 1.04 82.76± 1.27

large 65.78± 1.22 70.51± 1.42

CLIP base 85.61± 1.74 86.57± 1.38
large 83.67± 1.34 84.65± 1.39

Tiny ImageNet Clustering
DINOv2 base 67.81± 0.24 68.23± 0.25

large 71.98± 0.15 73.19± 0.21

CLIP base 35.43± 0.16 39.53± 0.15
large 52.54± 0.16 55.45± 0.14

CIFAR-100 k-NN

DINOv2 base 87.31 87.58
large 91.12 91.39

CLIP base 71.72 73.56
large 78.81 80.90

DeiT III base 82.22 81.97
large 86.13 86.22

ImageNet-1k k-NN
DINOv2 base 82.04 82.07

large 83.50 83.62

CLIP base 73.12 74.26
large 79.25 80.35
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Table A2: Image clustering result across various attenuation strategies and model
sizes (small : ViT-S/14 distilled, base: ViT-B/14 distilled, large: ViT-L/14 distilled,
giant : ViT-g/14) reported in ACC.

Model Size Method CIFAR-10 CIFAR-100 STL-10 Tiny ImageNet

base

original 83.63± 1.13 64.26± 0.30 75.65± 1.04 67.81± 0.24
-infinity 84.47± 1.33 64.92± 0.23 82.68± 1.25 68.27± 0.23
average 84.27± 1.30 64.88± 0.33 82.87± 1.28 68.34± 0.22

minimum 84.49± 1.19 65.02± 0.14 82.76± 1.27 68.23± 0.25

large

original 82.16± 1.48 68.69± 0.34 65.78± 1.22 71.98± 0.15
-infinity 82.49± 1.56 69.03± 0.21 70.53± 1.22 73.18± 0.19
average 82.41± 1.27 68.75± 0.37 72.13± 1.39 72.67± 0.18

minimum 82.49± 1.55 69.04± 0.22 70.51± 1.42 73.19± 0.21

giant

original 78.09± 1.25 68.99± 0.39 55.91± 1.14 73.25± 0.16
-infinity 78.64± 1.87 69.56± 0.33 56.00± 0.84 73.52± 0.16
average 79.19± 1.87 68.58± 0.25 56.25± 0.88 72.97± 0.19

minimum 78.59± 1.91 69.50± 0.28 56.01± 0.93 73.54± 0.17

Table A3: Image clustering result when adopting LSA in various model sizes (small :
ViT-S/14 distilled, base: ViT-B/14 distilled, large: ViT-L/14 distilled, giant : ViT-g/14)
reported in ACC.

Model Size Method CIFAR-10 CIFAR-100 STL-10 Tiny ImageNet

base

original 83.63± 1.13 64.26± 0.30 75.65± 1.04 67.81± 0.24
LSA 83.25± 1.41 64.35± 0.28 75.77± 1.11 67.83± 0.15
ours 84.49± 1.19 65.02± 0.14 82.76± 1.27 68.23± 0.25

LSA + ours 83.97± 1.55 64.86± 0.37 82.45± 1.45 68.33± 0.14

large

original 82.16± 1.48 68.69± 0.34 65.78± 1.22 71.98± 0.15
LSA 82.84± 1.68 69.33± 0.34 69.39± 1.22 72.22± 0.20
ours 82.49± 1.55 69.04± 0.22 70.51± 1.42 73.19± 0.21

LSA + ours 83.14± 1.47 69.75± 0.32 76.58± 1.46 73.60± 0.17

giant

original 78.09± 1.25 68.99± 0.39 55.91± 1.14 73.25± 0.16
LSA 78.82± 2.05 69.30± 0.33 56.91± 0.71 73.36± 0.16
ours 78.59± 1.91 69.50± 0.28 56.01± 0.93 73.54± 0.17

LSA + ours 79.70± 1.56 69.84± 0.35 58.95± 0.92 73.90± 0.18
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Table A4: Image clustering result across various artifacts identification strategies
and model sizes (small : ViT-S/14 distilled, base: ViT-B/14 distilled, large: ViT-L/14
distilled, giant : ViT-g/14) reported in ACC.

Model Size Method CIFAR-10 CIFAR-100 STL-10 Tiny ImageNet

base

original 83.63± 1.13 64.26± 0.30 75.65± 1.04 67.81± 0.24
query 84.49± 1.19 65.02± 0.14 82.76± 1.27 68.23± 0.25
key 83.13± 1.06 64.78± 0.31 79.03± 1.22 68.14± 0.11

value 84.29± 0.98 64.98± 0.22 82.77± 1.44 68.30± 0.18
output 84.49± 1.67 64.53± 0.29 75.82± 1.06 67.96± 0.18

large

original 82.16± 1.48 68.69± 0.34 65.78± 1.22 71.98± 0.15
query 82.49± 1.55 69.04± 0.22 70.51± 1.42 73.19± 0.21
key 82.92± 1.73 69.09± 0.32 70.66± 1.31 73.17± 0.17

value 82.49± 1.56 69.05± 0.18 70.56± 1.41 73.21± 0.16
output 82.97± 1.82 69.15± 0.30 69.58± 1.14 73.03± 0.18

giant

original 78.09± 1.25 68.99± 0.39 55.91± 1.14 73.25± 0.16
query 78.59± 1.91 69.50± 0.28 56.01± 0.93 73.54± 0.17
key 78.63± 1.88 69.39± 0.27 56.01± 0.94 73.52± 0.20

value 78.59± 1.91 69.51± 0.30 56.01± 0.93 73.53± 0.19
output 78.65± 1.86 69.54± 0.29 56.02± 0.92 73.52± 0.16

Table A5: License info of images in Fig. 4 of the paper (※urls of number 2 and 9 are
currently invalid).

Number Image id URL License
1 526751 http://farm4.staticflickr.com/3288/2933360267_ae24740821_z.jpg Attribution-NonCommercial-NoDerivs License
2 574315 http://farm3.staticflickr.com/2010/2247055627_5269f84985_z.jpg Attribution-NonCommercial-NoDerivs License
3 5037 http://farm8.staticflickr.com/7379/9599671465_8a2f486da1_z.jpg Attribution-NoDerivs License
4 246883 http://farm4.staticflickr.com/3067/2869541146_a627d12677_z.jpg Attribution-NonCommercial-ShareAlike License
5 253433 http://farm1.staticflickr.com/162/361912851_59c9993d91_z.jpg Attribution-NonCommercial-NoDerivs License
6 231237 http://farm4.staticflickr.com/3607/3342869781_cd4a4b1154_z.jpg Attribution-NonCommercial-ShareAlike License
7 289659 http://farm8.staticflickr.com/7031/6786602747_b7b811b0d5_z.jpg Attribution-NonCommercial-NoDerivs License
8 163290 http://farm7.staticflickr.com/6166/6190069448_f9da6727e6_z.jpg Attribution-NonCommercial License
9 66817 http://farm8.staticflickr.com/7279/7864913910_9e85e0a82a_z.jpg Attribution License
10 424545 http://farm4.staticflickr.com/3193/3054220374_d2a3456295_z.jpg Attribution-NonCommercial-NoDerivs License
11 378673 http://farm8.staticflickr.com/7124/7810951178_b622f1466c_z.jpg Attribution-NonCommercial-NoDerivs License
12 405279 http://farm1.staticflickr.com/236/443807489_3d7fba2557_z.jpg Attribution License
13 332570 http://farm2.staticflickr.com/1051/1392968224_0f863f4054_z.jpg Attribution-NonCommercial License
14 131386 http://farm6.staticflickr.com/5074/5860045248_f99b35c5c8_z.jpg Attribution-ShareAlike License
15 338560 http://farm5.staticflickr.com/4044/4583091116_28eaab2a2b_z.jpg Attribution License

Attribution-NonCommercial-ShareAlike License : http://creativecommons.org/licenses/by-nc-sa/2.0/
Attribution-NonCommercial License : http://creativecommons.org/licenses/by-nc/2.0/
Attribution-NonCommercial-NoDerivs License : http://creativecommons.org/licenses/by-nc-nd/2.0/
Attribution License : http://creativecommons.org/licenses/by/2.0/
Attribution-ShareAlike License : http://creativecommons.org/licenses/by-sa/2.0/
Attribution-NoDerivs License : http://creativecommons.org/licenses/by-nd/2.0/
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