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Supplementary materials

A Trainable parameters

As shown in Tab. 1, our proposed methods use far fewer training parameters
than the full fine-tuning method. This is mainly because our methods do not
have parameters in the encoder and hyperprior parts that need training, allowing
for a faster learning process. Additionally, our methods only need to update a
relatively small set of parameters, increasing their overall efficiency. Specifically,
the method that repeats parameters has a much smaller number of parameters
compared to the other methods. This points to the high efficiency and practi-
cality of our methods and strengthens their potential for effective use in various
real-world situations.

B Adapter on hyperprior model

We conducted experiments on integrating our adapter structure with hyper-
prior models. As Fig. 1 shows, this did not lead to improvements in PSNR and
MS-SSIM values. Furthermore, the compression performance got worse at lower
bitrates. This can be attributed to the fact that the added structure makes more
bits need to be transferred.

C GoP size variation

As demonstrated in prior researches [3,4], the commonly used practical Group of
Pictures (GoP) size is close to 32. Thus, We also evaluated the performance with
the GoP size set to 32, using the same Rate-distortion (RD) curve. The datasets
for this evaluation remained the same, including UVG [5], MCL-JCV [6], and
HEVC class B and C [2]. As shown in Fig. 2, the RD curves of PSNR and MS-
SSIM displayed largely similar performance to the previous result with a smaller
GoP size. Although there was a slight decrease in performance at lower bitrates,
the overall performance remained consistent, demonstrating the robustness and
applicability of our proposed methods to larger GoP sizes. This suggests that our
proposed methods can be effectively applied even when the GoP size is increased,
further enhancing the versatility of our method.

D Qualitative results

As indicated in Sec. 4.3, some datasets, especially those with cartoon-style or
complex movements, pose challenges in reconstructing images. Therefore, we
present the qualitative results for each dataset in Fig. 3, Fig. 4, and Fig. 5.
The comparison is made at similar bpp settings, revealing that SSF [1] exhibits
motion blur in complex domains. Moreover, full fine-tuning results in distortion
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Total params. (M) Train params. (M)
Encoder Hyperprior Decoder all

Full fine-tuning 34.24 12.70 16.59 4.95 34.24
Ours 35.03 0 0 0.79 0.79

Ours(repeat) 34.27 0 0 0.03 0.03
Table 1: Number of training parameters for video sequence instance-adaptation.

Fig. 1: RD-curve when apply adapter on hyperprior model. Comparison conducted on
UVG dataset.

from the original, failing to accurately represent finer details. In contrast, both
of our methods can effectively represent their respective areas without motion
blur, even in the cartoon domain. These qualitative results highlight the superior
overfitting mitigation capability of our methods.

E PSNR per frame

To assess the detailed performance of our method, we measure the PSNRs for
each frame. As depicted in Fig. 6, the comparison is made between the baseline
and our method with no duplication, focusing on the some of UVG dataset se-
quence. Both the baseline and our method show an increasing trend in PSNR.
However, our method exhibits an overall improvement in PSNRs of approxi-
mately 1 dB, with smaller spikes, even though bpp is lower than baseline. This
suggests that our method may be prone to overfitting the input video sequences
with saving the number of bits.
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Fig. 2: RD-curve with GoP set to 32. Comparison conducted on UVG, MCL-JCV,
HEVC class B, and C datasets.

Fig. 3: Qualititive results of MCL-JCV 10 dataset.
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Fig. 4: Qualititive results of MCL-JCV 24 dataset.

Fig. 5: Qualititive results of MCL-JCV 25 dataset.
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Fig. 6: PSNR for each frame using the same baseline model, tested on the ‘HoneyBee’,
‘ReadySteadyGo’, and ‘Jockey’ sequence. The Number in the legend represent bpp.
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