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Appendix for:

Vision language models are blind

A Description of models tested

On our benchmark, we find that some chat interfaces perform worse than their
API counterparts (e.g ., the system on gemini.google.com is worse than Gemini-1.5
Pro on aistudio.google.com) perhaps due to their extra finetuning [4] or spe-
cific system prompts [2] that attempt to align VLMs with a company’s policies.
Similarly, we find GPT-4o and Claude 3 models in perplexity.ai to perform
worse than the original API models. To make sure we test the best VLMs avail-
able, we access all four models via their available APIs on OpenAI, Google, and
Anthropic.

We describe below the exact API versions and settings for each model.

A.1 GPT-4o

We access the API for GPT-4o (gpt-4o-2024-05-13) via platform.openai.com
and use all default settings including:

– temperature: 1.0
– detail: auto (see API doc), i.e., the system will automatically decide whether

to use the “low-res” (85 tokens) or “high-res” mode (85 tokens and a set of
170 tokens for every 512×512 tile).

A.2 Gemini-1.5 Pro

Gemini-1.5 (gemini-1.5-pro-latest) API is accessible via aistudio.google.com,
and we use all default settings.

A.3 Claude-3 Sonnet

We access the anthropic API via console.anthropic.com to use Sonnet-3
(claude-3-sonnet-20240229) with default settings.

perplexity.ai
https://platform.openai.com/
https://aistudio.google.com
https://claude.ai/
platform.openai.com
https://platform.openai.com/docs/guides/vision
aistudio.google.com
console.anthropic.com
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A.4 Claude-3.5 Sonnet

We follow the same process as for Sonnet-3 and use console.anthropic.com
to access Sonnet-3.5 (claude-3-5-sonnet-20240620) API with default settings.

A.5 LLaVA OneVision-qwen2

We run the publicly available code of LLaVA OneVision-qwen2 locally with
temperature=0.2.

A.6 Phi-3.5-vision-instruct

We host Phi-3.5-vision-instruct on a local machine via their Hugging Face
page with default settings.

A.7 InternVL-2

We access InternVL-2 via their Hugging Face repository, and use the default
settings.

console.anthropic.com
https://github.com/LLaVA-VL/LLaVA-NeXT
https://huggingface.co/microsoft/Phi-3.5-vision-instruct
https://huggingface.co/microsoft/Phi-3.5-vision-instruct
https://huggingface.co/collections/OpenGVLab/internvl-20-667d3961ab5eb12c7ed1463e
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B Hallucinations and educated guesses are among VLMs’
common failures

What is the color of the overlapping area between two circles?

The overlapping area between the two circles is turquoise (a shade of cyan).
The overlapping area of a green circle and a blue circle would be **cyan**.
There is no overlapping area between the two circles in this image. The

image shows two separate circles - one green circle and one blue circle - that
are not intersecting or overlapping with each other. ✗

I apologize, but there is no overlapping area between the two circles in this
image. The image shows two distinct circles - one green and one blue ✗ [...]

Fig. F1: Sometimes VLMs ( and ) fail to see clearly and make educated guesses.
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C Evaluating open-source models on BlindTest

On average, 8 well-known open-source models perform worse than the closed-
source VLMs on BlindTest. However, the best-performing open-source model
(LLaVA OneVision-qwen2-72B-ov), performs on-par with Sonnet-3 (45.92 vs.
45.73; Tab. T1). As model size increases, VLMs tend to perform better. For
instance, the accuracy increase from LLaVA OneVision-qwen2-ov 0.5B to 72B is
+27.1 (18.82 → 45.92; Tab. T1). In sum, open-source VLMs exhibit similar
limitations to closed-source models on BlindTest.

Table T1: Open-source VLMs underperform the closed-source ones on BlindTest.

Model Size ### DDD
A

B

C

D Task mean

Random 33.33 50.00 5.77 20.00 20.00 25.00 4.55 33.33 24.00

GPT-4o n/a 41.61 75.91 74.23 41.25 20.21 55.83 39.58 53.19 50.23
Gemini-1.5 n/a 66.94 93.62 83.29 20.25 24.17 87.08 39.39 53.13 58.48
Sonnet-3 n/a 43.41 86.46 72.06 29.79 1.87 65.00 36.17 31.11 45.73
Sonnet-3.5 n/a 75.36 90.82 87.88 66.46 77.71 92.08 74.26 58.19 77.84

LLaVA OneVision-qwen2-ov 72B 45.83 90.92 44.71 20.00 11.74 87.07 8.95 58.06 45.92
LLaVA OneVision-qwen2-si 72B 45.33 83.48 38.14 20.00 11.46 57.50 10.23 48.06 38.41
LLaVA OneVision-qwen2-ov 7B 48.17 83.93 42.79 20.00 7.29 42.92 21.02 47.22 39.17
LLaVA OneVision-qwen2-si 7B 44.50 84.67 40.22 20.00 7.29 58.75 14.01 55.00 40.00
LLaVA OneVision-qwen2-ov 0.5B 17.28 75.07 9.78 12.50 9.58 20.42 0.38 5.56 18.82
LLaVA OneVision-qwen2-si 0.5B 33.14 73.21 6.25 27.29 2.50 14.58 1.13 26.11 23.03
InternVL-2 8B 47.28 91.00 57.69 20.00 13.96 28.33 7.57 60.28 40.76
Phi-3.5-vision-instruct 4.2B 37.78 83.63 16.51 18.75 11.46 32.50 11.74 19.72 29.01

Mean 45.55 84.39 47.79 26.36 16.60 53.50 22.03 42.97 42.28
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D Advanced prompting techniques

D.1 Finding: Meta-prompting and 2-shot examples do not improve
the VLMs’ performance on the two circles task ( )

We run GPT-4o and Sonnet-3.5 on the two circle task ( ) with 2-shot (pro-
viding 2 example images with answers) and meta-prompting1 [3]. We find
them to perform worse than our baseline prompts (Tab. T2). An explanation
is that the VLMs already understand the questions but are limited by the abil-
ity to “see”. These techniques are not helpful perhaps because BlindTest tasks
intuitively do not benefit from thinking aloud.

Table T2: In-context examples and meta-prompting do not improve the overall accu-
racy of the Sonnet-3.5 and GPT-4o on the task.

Prompt

Baseline 91.66 72.69
Meta-prompting [3] 90.53 65.62
2-shot 77.93 68.00

1 Describe the image in detail first, and then answer: Are the two circles overlapping?
Y/N.
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E Two touching circles task

E.1 Benchmark Construction Details

To create our benchmark, we use 5 parameters to control the diversity of the
samples.

– Color: We fix the colors for each circle to use {magenta, dodgerblue}.
– Image size: We use the physical size, and the DPI arguments in matplotlib

to initialize the image size. The physical size is fixed to 5× 5, and the DPI
∈ {100, 200, 300}. The output image sizes are {384, 769, 1155}px.

– Diameter: We use uniform diameters for both circles and choose the value
proportional to the image size, where the diameter is { 1

4 ,
1
5 ,

1
6 ,

1
7} of the image

size.
– Distance: The boundary-to-boundary distance between circles is a fraction

of the diameter chosen from {-0.25, -0.2, -0.15, -0.1, -0.05, 0.0, 0.05, 0.1, 0.15,
0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}. Based on our definition, center-to-center
distance is (2+distance)×diameter.

– Rotation: We include 2 main rotations (vertical and horizontal), and 2
diagonal rotations.

We use the center of the image as the origin so that it always aligns with the
midpoint of distances between two circles. This systematic process results in a
benchmark comprising 768 images (see Tab. T3 and Fig. F2).

Code The code is available at https://github.com/anguyen8/vision-
llms-are-blind/blob/main/src/TouchingCircle/TwoTouchingCircles.ipynb.
Prompts

1. Are the two circles touching each other? Answer with Yes/No.
2. Are the two circles overlapping? Answer with Yes/No.

Groundtruth We consider two circles overlapping and touching (O, T ) if
d < 0.0; non-overlapping but touching (O, T ) if d = 0.0; and non-overlapping &
non-touching (O, T ) when d > 0.0 (Fig. F3). Random-baseline accuracy: 50%.

https://github.com/anguyen8/vision-llms-are-blind/blob/main/src/TouchingCircle/TwoTouchingCircles.ipynb
https://github.com/anguyen8/vision-llms-are-blind/blob/main/src/TouchingCircle/TwoTouchingCircles.ipynb
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Table T3: Number of samples for each category is the same in our benchmark, where
they sum to 768.

Parameter Values Samples Total Samples

Image size (C)
384px 256

768769px 256
1155px 256

Diameter (ϕ)

C
4

192

768

C
5

192

C
6

192

C
7

192

Distance

-0.25×ϕ 48

768

-0.2×ϕ 48
-0.15×ϕ 48
-0.1×ϕ 48
-0.05×ϕ 48
0.0×ϕ 48
0.05×ϕ 48
0.1×ϕ 48
0.15×ϕ 48
0.2×ϕ 48
0.25×ϕ 48
0.3×ϕ 48
0.35×ϕ 48
0.4×ϕ 48
0.45×ϕ 48
0.5×ϕ 48

Rotation

Vertical 192

768Horizontal 192
Diagonal 1 192
Diagonal 2 192
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(a) Rotation (b) Diameter (c) Distance
0.05 0.2 384 0.05 0.2 384 0.0 0.14 769 0.0 0.17 769 -0.1 0.25 1155 0.0 0.25 1155

0.05 0.2 384 0.05 0.2 384 0.0 0.2 769 0.0 0.25 769 0.2 0.25 1155 0.5 0.25 1155

Fig. F2: Samples in the benchmark include various settings for drawing two circles.
We start with choosing a rotation (a) and change other parameters of each plot, e.g .,
the diameter (b), the distance between perimeters (c), and the image size (in pixels).
We show the parameters that can be changed to generate different samples inside the
legend.

(a) 4 diameter ϕ (b) 4 orientations
-0.15 0.14 384 -0.05 0.17 384 0.0 0.2 769 0.05 0.25 769 0.15 0.25 1155 0.25 0.25 1155 0.35 0.25 1155 0.5 0.25 1155

d -0.15 -0.05 0.0 +0.05 +0.15 +0.25 +0.35 +0.50
GT labels O,T O,T O,T O,T O,T O,T O,T O,T

Fig. F3: For each image size and distance d, we vary diameter (a) and orientation
(b). Groundtruth: O: overlapping. T : touching. O: non-overlapping. T : non-touching.
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E.2 Finding: image resolution does not affect VLMs performance

Fig. F4-left shows that VLMs are almost invariant to the image resolution. For
example, GPT-4o and Sonnet-3’s performance saturates at 769px, and Sonnet-
3.5 slightly performs worse at 769 and 1155px compared to 384px. Gemini-1.5,
however, is fairly consistent across different resolutions. Based off these results,
we conclude that VLMs’ ability to see the intersection of two circles does not
depend on the quality of the image.

E.3 Finding: the vertical rotation closes the gap between models’
performance

As shown in Fig. F4-middle, arranging the circles in vertical rotation causes the
models to perform similarly on the benchmark. Although Gemini-1.5 slightly
performs better at diagonal and Sonnet-3.5 at horizontal rotation, VLMs per-
form relatively better at vertical rotation. This suggests that the task complexity
due to various rotations is not the main source of low performance in VLMs.

E.4 Finding: Increasing the distance improves the VLMs’ accuracy

VLMs perform better when the distance increases from zero to positive values
(see Fig. F4-right). However, Sonnet-3.5 is more conservative than other VLMs
that mostly answer “Yes”, which results in its lowest performance at negative
distances.

384 769 1155
0.0

0.2

0.4

0.6

0.8

1.0

diagonal vertical horizontal
0.0

0.2

0.4

0.6

0.8

1.0

negative zero positive
0.0

0.2

0.4

0.6

0.8

1.0

GPT-4o Gemini 1.5 Pro Claude 3 Sonnet Claude 3.5 Sonnet

Fig. F4: There is no correlation between the resolution of the image (left) and VLMs’
performance. Across various rotations (middle), VLMs perform almost the same at
vertical. Most failure cases are at boundary distances (right).
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E.5 Finding: VLMs prefer a specific rotation

Tab. T4 shows that VLMs prefer different rotations. For example, GPT-4o per-
forms best at vertical, Gemini-1.5 at diagonal, Sonnet-3.5 at horizontal, and
Sonnet-3 at vertical.

Table T4: VLM accuracy is often best at a specific two-circle orientation. Across three
different resolutions, GPT-4o and Sonnet-3 perform much better when two circles are
arranged vertically. In contrast, Gemini-1.5 and Sonnet-3.5 prefer the diagonal and
horizontal orientations, respectively.

Resolution Rotation

a 384px
vertical 82.03 93.75 96.09 90.62

horizontal 71.87 89.84 75.78 96.87
diagonal 69.97 95.70 78.90 94.92

b 769px
vertical 89.84 95.31 92.97 84.37

horizontal 80.47 85.94 83.59 91.41
diagonal 70.70 97.26 90.23 89.06

c 1155px
vertical 91.41 96.09 91.41 84.37

horizontal 75.78 82.81 75.78 93.75
diagonal 71.09 96.87 91.80 90.23

E.6 Finding: Various coloring of the two circles has minimal effects
on the overall accuracy

VLMs’ performance in the task does not change substantially (±5.79%
for Sonnet-3.5 and ±10.81% for GPT-4o) when tested against different colors
(Tab. T5).

Table T5: The small △ in VLMs’ performance by changing the colors of the circles
suggests that coloring does not significantly impact the VLMs’ vision capabilities.

Color

Magenta - Blue (baseline) 90.93 76.10
Red - Black 96.72 86.91
Yellow - Green 94.39 80.52
Dark gray - Light gray 93.62 82.25
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E.7 Results for fine-tuning Bunny on the two touching circle

In order to determine if fine-tuning could improve the model’s performance on
this task we attempted to fine-tune Bunny [1] (Bunny-v1.1-Llama-3-8B-V with
the original weights) on the two touching circles task. We fine-tuned Bunny using
datasets of sizes: 10K, 20K, 50K, and 100K samples, each containing a balanced
number of instances where the circles are either overlapping or separate (equal
number of YES/NO answers in the training set).

The baseline model, without any fine-tuning, achieved 17.1% accuracy for
task overlap and 11.7% for touching circles. After fine-tuning, we observed im-
provements with smaller datasets, such as 10K and 20K cases, where accuracy
reached up to 36.8%. However, increasing the number of samples did not lead to
better performance. In some instances, such as with the 50K dataset, the model
failed to predict anything and only generated the end-of-text token.

The loss values for all these experiments were very close to zero, indicating
that the model overfits the training set but fails to generalize. This suggests that
training on this task is not straightforward and may require a combination of
multiple tasks or that this problem does not have a simple solution.

Fig. F5 shows the accuracy breakdown by distance of the two circles. The
model’s performance improves when the circles are overlapping, but when there
is a long distance between them, the model does not generalize well and cannot
provide accurate answers.

https://huggingface.co/BAAI/Bunny-v1_1-Llama-3-8B-V
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(a) Accuracy by distance without fine-tuning
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(b) Accuracy by distance with 10K samples
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(c) Accuracy by distance with 20K samples
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(d) Accuracy by distance with 50K samples

-0.15 -0.10 -0.10 -0.05 -0.05 0.00 0.05 0.05 0.10 0.10 0.15 0.20 0.20 0.25 0.30 0.35 0.35 0.40 0.40 0.45 0.45 0.50

Distance

overlap

touch

100.0 100.0 100.0 100.0 100.0 100.0 11.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

100.0 100.0 100.0 100.0 100.0 100.0 13.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Overall overlap: 27.8% | Overall touch: 27.9%

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

(e) Accuracy by distance with 100K samples

Fig. F5: Comparison of Bunny’s accuracy by distance with and without fine-tuning
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E.8 Additional examples

We show examples of models’ responses to the prompts on the two touching
circles task in Fig. F6.

Are the two circles touching each other? Answer with Yes/No.

-0.1 0.2 384 -0.05 0.14 384 0.0 0.17 1155 0.05 0.14 769 0.1 0.25 1155 0.15 0.17 1155

Yes ✓ Yes ✓ Yes ✓ No ✓ Yes ✗ Yes ✗

Yes ✓ Yes ✓ Yes ✓ Yes ✗ No ✓ No ✓

Yes ✓ Yes ✓ Yes ✓ Yes ✗ Yes ✗ Yes ✗

Yes ✓ No ✗ Yes ✓ No ✓ No ✓ No ✓

GPT-4o Gemini-1.5 Sonnet-3 Sonnet-3.5

Fig. F6: Some VLMs consistently fail by not seeing the distance between the two circles
at large distances and resolutions (GPT-4o and Sonnet-3–rightmost). Gemini-1.5 and
Sonnet-3 also struggle to see the small gaps between circles (distance=0.05 )

Are the two circles overlapping? Answer with Yes/No.

-0.1 0.14 769 -0.05 0.2 384 0.0 0.25 1155 0.05 0.17 769 0.1 0.2 1155 0.15 0.2 384

Yes ✓ Yes ✓ Yes ✗ Yes ✗ No ✓ Yes ✗

No ✗ Yes ✓ Yes ✗ No ✓ No ✓ No ✓

Yes ✓ Yes ✓ Yes ✗ Yes ✗ Yes ✗ No ✓

No ✗ No ✗ No ✓ No ✓ No ✓ No ✓

GPT-4o Gemini-1.5 Sonnet-3 Sonnet-3.5

Fig. F7: VLMs consistently fail at smaller distances. However, when the gap is large
and clearly visible, GPT-4o remains unreliable. Sonnet-3.5 tends to conservatively an-
swer “No” regardless of the actual distance between the two circles.
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F Task 3: Identifying the circled letter in a string

F.1 Task construction

Each image is created using a combination of the below variables.

– String: We test three strings {Acknowledgement , Subdermatoglyphic ,
tHyUiKaRbNqWeOpXcZvM }. While they all have letters of varying widths and
heights, the first two are English words while the latter is a string of random
characters. Subdermatoglyphic is the longest English word that has no letter
repetitions.

– Letter: We draw the oval ( ) over every letter, one at a time, in each string.
– Font: We use 2 different font families for each word, OpenSans and Helvetica.
– Oval ( ) thickness: We generate the with 3 various line thicknesses.
– Scaling factor: Since each letter has a unique size, we use a scaling factor

to control the size of the .

Finally, we render the text on a white canvas with a size of 1250×1250 pixels,
and we produce 90 images for Acknowledgement , 102 for Subdermatoglyphic , and 120
samples for tHyUiKaRbNqWeOpXcZvM (see Tab. T6 and Fig. F8).

Evaluation To determine the models’ prediction, we extract the character en-
closed in {curly braces} in the models’ response.

Code The code is available at https://github.com/anguyen8/vision-llms-
are-blind/blob/main/src/CircledWord/GenerateSamples.ipynb.
Prompts

1. Which letter is being circled? Please provide your answer in curly brackets,
e.g. {a}

2. Which character is being highlighted with a red oval? Please provide your
answer in curly brackets, e.g. {a}

Groundtruth letters must match predicted letters exactly (case-insensitive).

https://github.com/anguyen8/vision-llms-are-blind/blob/main/src/CircledWord/GenerateSamples.ipynb
https://github.com/anguyen8/vision-llms-are-blind/blob/main/src/CircledWord/GenerateSamples.ipynb
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(a) Acknowledgement (b) Subdermatoglyphic (c) tHyUiKaRbNqWeOpXcZvM

Fig. F8: Our benchmark comprises three different words, of which one letter is circled
by the red oval in each image.

Fig. F9: Which letter is being red circled?
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Table T6: The breakdown of our benchmark based on the number of different param-
eters shows our data is balanced for each word.

Parameter Values Samples Total Samples

Word
Acknowledgement 90

312Subdermatoglyphic 102
tHyUiKaRbNqWeOpXcZvM 120

Font OpenSans 156 312Helvetica 156

Image size (C) 1250x1250 pixels 312 312

Oval thickness

1
200

× C 104

3121
250

× C 104

1
300

× C 104
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F.2 Finding: VLMs mostly confuse the adjacent character for the
circled letter

Models often mistake the neighboring characters as actual circled letters. For
example, Fig. F10 shows that for Sonnet-3.5 in the word Acknowledgement , all
of the incorrect predictions for “n” are the neighboring letter “t”. For Gemini-
1.5, in the word tHyUiKaRbNqWeOpXcZvM , where letters “K” and “a” are adjacent,
100% of the mispredictions for “K” are the letter “a” (see Fig. F11).

Fig. F10: Adjacent letters are the most common wrong prediction for Sonnet-3.5 in
Acknowledgement , e.g ., letter “e” is predicted instead of “m” 20.83% of the time, or
letter “t” is predicted instead of “n” 27.08% of the time.
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Fig. F11: Gemini-1.5 tends to confuse adjacent letters like “a” and “K”. Gemini-1.5
also hallucinates the circled letter “a” as being the character “@” and it confuses the
letter “q” for the letter “g”.
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Fig. F12: Aggregate confusion matrix summed over all 4 VLMs and 12 responses for
each letter in the word Subdermatoglyphic. Models mostly mispredict characters near
the circled letter. VLMs sometimes hallucinate characters that do not even exist in the
word, e.g ., “@” (right panel).
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F.3 Finding: GPT-4o and Gemini-1.5 confuse the red oval as part of
the letter

Figs. F13 and F14 show that Gemini-1.5 and GPT-4o sometimes fail to recognize
that the red oval is not part of the letter. Gemini-1.5 tends to predict that the
circled letter “a” is actually the “@” sign (see Fig. F13). GPT-4o on the other
hand tends to predict “o” regardless of which letter is circled (Fig. F14).

Prediction: w Prediction: w Prediction: © Prediction: w

Prediction: o Prediction: y Prediction: o Prediction: o

Prediction: o Prediction: a Prediction: v Prediction: p

Fig. F13: Random samples for different words, and Gemini-1.5’s predictions, where
Gemini-1.5 mostly predicts the adjacent letters or confuses the red oval as part of the
circled letter.
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Fig. F14: GPT-4o is the most sensitive to confuse the red oval as part of the letter,
where it often predicts “o” instead of “l”, “y”, “p”, and “c” in the word Subdermatoglyphic .
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F.4 Finding: Models perform similarly across two common font
families

As shown in Fig. F15, models do not show a significant variance over different
fonts, suggesting our choice of font is not a reason for their unreliable perfor-
mance.

Fig. F15: VLMs do not show a consistent trend between fonts. This suggests that
using different spacing between letters, letter styles, and letter size has minimal effects
on the VLMs’ ability to see the content of the red oval.
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F.5 Finding: models are invariant to our choice of prompts

Our choice of prompts has little impact on the performance of the models as
depicted in Fig. F16.

Fig. F16: Model performance breakdown for different prompts P1: "Which letter is
being circled? Please provide your answer in curly brackets, e.g. {a}" and P2: "Which
character is being highlighted with a red oval? Please provide your answer in curly
brackets, e.g. {a}". Regardless of the prompts, VLMs perform similarly in seeing the
contents of the red oval.
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F.6 Finding: VLMs fail to see the circled letter on various English
words

On average, SOTA VLMs show the same limitations across various English
words (see Tab. T7). However, the mean accuracy over words with less and
non-repetitive letters is higher than others (the mean accuracy over the word
question is 90.36% while it is 79.86% on the word civilization ).

Table T7: Overall, VLMs perform better on short words without repetitive letters,
e.g ., question . Yet, the mean accuracy of four SOTA VLMs (86.43%) is far from being
100% accurate.

String Mean

question 98.96 100.00 62.50 100.00 90.36
syndrome 91.67 91.67 70.83 91.58 86.44
environmental 82.69 89.10 73.72 89.74 83.81
civilization 79.17 87.50 61.80 90.97 79.86
tournament 89.17 92.50 85.00 100.00 91.67

Mean accuracy 88.33 92.15 70.77 94.46 86.43

Table T8: Except for GPT-4o, all other models have a higher accuracy (%) on the two
English words than on the random string, suggesting that VLMs might leverage their
familiarity with a known word to make educated guesses.

String Mean

Acknowledgement 77.22 96.67 87.22 91.11 88.06
Subdermatoglyphic 64.42 74.02 68.14 94.10 75.25
tHyUiKaRbNqWeOpXcZvM 81.25 79.17 60.83 77.92 74.79

Mean accuracy 74.23 83.29 72.06 87.88 79.37
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F.7 Additional Examples

Examples from our evaluation of VLMs on the circled letter task are shown in
Fig. F17.

Which character is being highlighted with a red oval? Please provide your
answer in curly brackets, e.g. {a}

e ✗ e ✗ c ✓ g ✓ @ ✗ r ✗

m ✓ l ✓ c ✓ o ✗ a ✓ b ✓

e ✗ n ✗ i ✗ o ✗ i ✗ n ✗

e ✗ l ✓ © ✗ g ✓ a ✓ b ✓

GPT-4o Gemini-1.5 Sonnet-3 Sonnet-3.5

Fig. F17: Most failure cases consist of predicting the adjacent letters (predicting “e”
instead of “m” in GPT-4o, Sonnet-3, and Sonnet-3.5 leftmost), and confusing the red
oval as part of the circled letter (predicting “©” instead of “c” in Sonnet-3.5).
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G Counting the number of line intersections task

G.1 Benchmark Construction Details

To create our benchmark, we use 5 parameters to control the diversity of the
samples.

– Color: We fix the colors for each line to use {blue, red}
– Image size: We generate 3 different image resolutions, {384, 768, 1152}px,

to include high and low-resolution samples in our tests.
– Grid size: We divide the whole image into a 12×12 grid with 144 equal

sized cells. Then, we choose 3 points for each (blue and red) line on the
grid to draw the line plots. To make sure the line plots do not overlap and
the intersections are well distanced from the edges, we fix the x-coordinates,
and randomly sample y-coordinates from the invisible 12×12 grid. The grid
sampling also avoids picking the same coordinates for both blue and red line.

– X-coordinate: For each point, we choose x= 0, C
2 , C px.

– Y-coordinate: For each x-coordinate above, we randomly sample a y-coordinate
from 12 pre-defined rows in the 12×12 grid. We also ensure that no blue and
red points share the exact same (x,y) coordinates.

– Line thickness: We vary the line widths with standard matplotlib values
(2 and 4), which renders into a width of 0.005 × C and 0.01 × C pixels,
respectively.

– Number of intersections: We count the intersections based on the three
points defined for each line ((x, y1), (x, y2), and (x, y3)).

We repeat the process until we have 2 line widths×3 image sizes×100 samples
of 0, 1, and 2 intersections, resulting in 1800 images (see Tab. T9 and Fig. F18).
Code The code to generate the images is at https://github.com/anguyen8/
vision-llms-are-blind/blob/main/src/LineIntersection/2dline.ipynb.
Prompts We ask each question using two different wordings:

1. How many times do the blue and red lines touch each other? Answer with a
number in curly brackets, e.g., {5}.

2. Count the intersection points where the blue and red lines meet. Put your
answer in curly brackets, e.g., {2}.

Groundtruth answers are ∈ {0, 1, 2} (random-baseline accuracy: 33.33%).

https://github.com/anguyen8/vision-llms-are-blind/blob/main/src/LineIntersection/2dline.ipynb
https://github.com/anguyen8/vision-llms-are-blind/blob/main/src/LineIntersection/2dline.ipynb
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(a) zero intersection (b) one intersection (c) two intersections

Fig. F18: Samples from the two intersecting lines benchmark that contain 0, 1, or 2
line intersections.

GT = 0 GT = 1

GT = 1 GT = 2

Fig. F19: Count intersections



28

Table T9: We generate the same number of images based on various parameters to
have a balanced benchmark.

Parameter Values Samples Total Samples

Image size (C)
384px 600 1800768px 600
1152px 600

Line thickness 0.005× C 900 1800
0.01× C 900

Number of intersections
0 600

18001 600
2 600
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G.2 Finding: image resolution does not influence VLM’s ability to
count the line intersections

Fig. F20 depicts that increasing the resolution in our plots does not help the
VLMs see and count the intersections of 2D lines.

G.3 Finding: VLMs perform similarly when the lines intersect twice

Our benchmark consists of images with 0 to 1 line intersections with an iden-
tical number of samples in each category. We break down the performance of
each model based on the groundtruth in Fig. F20-right to analyze where VLMs
mostly fail in their overall performance. As depicted in Fig. F20-right, VLMs
perform relatively better on 2 intersections (except Sonnet-3.5 that is best on
1 intersection) and perform worse on 0 intersections (Sonnet-3 is the worst).

384 768 1152
0.0

0.2

0.4

0.6

0.8

1.0

0 1 2
0.0

0.2

0.4

0.6

0.8

1.0

GPT-4o Gemini 1.5 Pro Claude 3 Sonnet Claude 3.5 Sonnet

Fig. F20: VLMs are not sensitive to the image resolution to see and count the number
of intersections (left). When the lines intersect twice, VLMs perform similarly, while
Sonnet-3.5 has the least variance over different numbers of intersections (right).
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G.4 Additional Examples

We show examples of models’ responses to the prompts on the counting the
number of line intersections task in Fig. F21.

Count the intersection points where the blue and red lines meet. Put your
answer in curly brackets, e.g., {2}.

2 ✗ 0 ✓ 2 ✗ 2 ✗ 3 ✗ 4 ✗

2 ✗ 1 ✗ 1 ✓ 1 ✓ 2 ✓ 2 ✓

2 ✗ 2 ✗ 2 ✗ 1 ✓ 4 ✗ 1 ✗

2 ✗ 1 ✗ 1 ✓ 1 ✓ 2 ✓ 2 ✓

GPT-4o Gemini-1.5 Sonnet-3 Sonnet-3.5

Fig. F21: All VLMs, except Sonnet-3.5, fail at counting when there is no intersection,
even when the gap between 2 lines is large (second image on the left).

How many times do the blue and red lines touch each other? Answer with a
number in curly brackets, e.g., {5}.

1 ✗ 0 ✓ 2 ✗ 2 ✗ 4 ✗ 1 ✗

1 ✗ 1 ✗ 1 ✓ 2 ✗ 1 ✗ 1 ✗

4 ✗ 1 ✗ 2 ✗ 1 ✓ 4 ✗ 1 ✗

1 ✗ 0 ✓ 2 ✗ 1 ✓ 3 ✗ 2 ✓

GPT-4o Gemini-1.5 Sonnet-3 Sonnet-3.5

Fig. F22: VLMs cannot reliably count the intersections between the blue and red plots.
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H Counting the number of nested squares

H.1 Benchmark Construction Details

We use 5 parameters to create the images of nested squares.

– Depth: For each image, we draw N ∈ {2, 3, 4, 5} nested squares on the
image. We refer to each square in this collection as a depth.

– Initial size: We choose a random size for the first square in the bounds of
the image size.

– Reduction factor: We draw squares such that each depth is entirely con-
tained by its previous depth. We use a reduction factor to scale the square
sizes.

– Center: The first square’s center is chosen to ensure it is entirely visible
in the image. For the remaining squares, we choose the center based on the
space between the previous square and the new reduced size.

– Line thickness: We use standard matplotlib line width parameter of (2=3px,
3=4px, 4=6px).

We continue to generate images until we have 30 samples for each depth,
resulting in 120 images overall (see Tab. T10 and Fig. F23).

Code The code is available at https://github.com/anguyen8/vision-
llms-are-blind/blob/main/src/NestedSquares/GenerateSamples.ipynb.
Post-processing: To determine the model’s answer, we use Python to extract
the number from curly braces in the response e.g. {3}.
Prompts

1. How many squares are in the image? Please answer with a number in curly
brackets e.g., {10}.

2. Count total number of squares in the image. Answer with only the number
in numerical format in curly brackets e.g. {3}.

Groundtruth answers are ∈ {2, 3, 4, 5} (random-baseline accuracy: 25%).

https://github.com/anguyen8/vision-llms-are-blind/blob/main/src/NestedSquares/GenerateSamples.ipynb
https://github.com/anguyen8/vision-llms-are-blind/blob/main/src/NestedSquares/GenerateSamples.ipynb
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(a) 2 squares (b) 3 squares (c) 4 squares (d) 5 squares

Fig. F23: Random examples from the nested square task that have 2, 3, 4 or 5 squares
in the image.

GT = 2 GT = 3

GT = 4 GT = 5

Fig. F24: Count squares
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Table T10: Nested squares include the same number of samples for each parameter
value in our benchmark.

Parameter Values Samples Total Samples

Image size 1000px 120 120

Line thickness
3px 40

1204px 40
6px 40

Number of Squares

2 30

1203 30
4 30
5 30
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H.2 Finding: the best-performing model is affected by line width

Tab. T11 shows that the best VLM on the nested square task (Sonnet-3.5) is
more accurate as line width increases. In contrast, the worst model (GPT-4o)
shows the opposite trend as the line thickness changes, suggesting that GPT-4o
confuses squares when the borderline is thick.

Table T11: Line thickness has minimal effect on VLMs’ performance, suggesting that
visual attributes of shapes are not critical to VLMs when asked to count the shapes.

Line width

2 58.75 86.25 61.25 90.00
3 56.25 85.00 67.50 91.25
4 52.50 90.00 66.25 95.00

Average 55.83 87.08 65.00 92.08
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H.3 Additional Examples

We show examples of models’ responses to the counting the number of nested
squares task in Fig. F25.

Count total number of squares in the image. Answer with only the number in
numerical format in curly brackets e.g. {3}.

2 ✓ 5 ✗ 5 ✗ 5 ✗ 5 ✓ 5 ✓

2 ✓ 3 ✓ 5 ✗ 5 ✗ 5 ✓ 5 ✓

5 ✗ 4 ✗ 5 ✗ 5 ✗ 5 ✓ 4 ✗

2 ✓ 3 ✓ 4 ✓ 4 ✓ 4 ✗ 4 ✗

GPT-4o Gemini-1.5 Sonnet-3 Sonnet-3.5

Fig. F25: VLMs fail to reliably count the number of nested squares in an image.

How many squares are in the image? Please answer with a number in curly
brackets e.g., {10}.

3 ✗ 5 ✗ 3 ✓ 5 ✗ 5 ✗ 5 ✗ 6 ✗ 6 ✗

2 ✓ 3 ✓ 2 ✗ 3 ✓ 5 ✗ 5 ✗ 5 ✓ 4 ✗

2 ✓ 4 ✗ 2 ✗ 4 ✗ 5 ✗ 4 ✓ 4 ✗ 5 ✓

2 ✓ 3 ✓ 3 ✓ 3 ✓ 4 ✓ 4 ✓ 4 ✗ 5 ✓

GPT-4o Gemini-1.5 Sonnet-3 Sonnet-3.5

Fig. F26: Counting nested squares is not easy for VLMs even when there are only
two squares (leftmost). The task becomes harder as the count increases from 2 to 5.
Sonnet-3.5 performs the best (92.08%) but still not at the 100% by humans.
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I Counting the shapes in an Olympic-like logo

I.1 Benchmark Construction Details

We create the benchmark by generating images containing shapes resembling
the Olympic logo by choosing a combination of settings.

– Image size: We fix the physical size of the image in matplotlib to 5×5, and
change the resolution by changing the DPI value, which is ∈ {100, 200, 300}
to get images with sizes {384, 769, 1155}px.

– Number of shapes: We choose a number from {5, 6, 7, 8, 9}.
– Color: Each image is generated using two different coloring schemes. We

generate an all-black version and a second version by randomly sampling
colors from a colormap in matplotlib.

– Distance: To generate the interlaced shapes, we use a small boundary-to-
boundary distance factor for each row of the shapes. We fix this value to 0.1
proportional to the diameter of circles or side length of pentagons.

– Diameter: We choose a uniform diameter for all the circles in each image
from { 1

7 ,
1
10} proportional to the image size.

– Side length: We follow the same policy for the diameter to choose the side
length of the pentagons.

– Line thickness: We generate each image with {0.5, 1.0} line width of mat-
plotlib standard. This results in {1px, 2px} lines in 384px images, {2px, 3px}
lines in 769px images and {3px, 5px} lines in 1155px images.

We center the shape collection on the center of the image in two rows, and
generate 480 images (see Fig. F27 and Tab. T12), 240 images of circles, and 240
images of pentagons.

Code The code is available at https://github.com/anguyen8/vision-
llms-are-blind/blob/main/src/CountingCircles/OlympicCircles.ipynb
for circles and at https://github.com/anguyen8/vision-llms-are-blind/
blob/main/src/CountingCircles/OlympicPentagons.ipynb for pentagons.
Prompts

1. How many {shapes} are in the image? Answer with only the number in
numerical format.

2. Count the {shapes} in the image. Answer with a number in curly brackets
e.g. {3}.

where {shapes} = circles or pentagons.
Groundtruth answers are ∈ {5, 6, 7, 8, 9} (random-baseline accuracy: 20%).

https://github.com/anguyen8/vision-llms-are-blind/blob/main/src/CountingCircles/OlympicCircles.ipynb
https://github.com/anguyen8/vision-llms-are-blind/blob/main/src/CountingCircles/OlympicCircles.ipynb
https://github.com/anguyen8/vision-llms-are-blind/blob/main/src/CountingCircles/OlympicPentagons.ipynb
https://github.com/anguyen8/vision-llms-are-blind/blob/main/src/CountingCircles/OlympicPentagons.ipynb
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(a) Number of circles (b) Linewidth (c) Color (d) Pentagons
1 0.1 1155 1 0.1 1155 0.5 0.1 769 1 0.14 384 1 0.05 1155

1 0.1 1155 1 0.1 1155 1 0.1 769 1 0.14 384 1 0.07 1155

Fig. F27: We generate images of (a) different numbers of circles with various parameter
changes, e.g ., the diameter, (b) the linewidth (in points) (c) colorings, and the image
size (in pixels). For the pentagons, we vary the side length instead of the diameter.

(a) diameter ϕ (b) color: black vs. colorful (c) shape: # vs. D
0.5 0.1 384 0.5 0.14 384 1 0.1 769 1 0.1 769 1 0.1 1155 1 0.05 1155

# shapes 5 6 7 8 9 9

Fig. F28: Images span across three sizes and shapes span across two diameters (and
two side lengths for D), two color options (black vs. colored), and two line widths.

Table T12: We create 480 images containing circles and pentagons that are uniformly
distributed over various parameters.

Parameter Values Samples Total Samples

Shape Circles 240 480Pentagons 240

Image size (C)
384px 80

240769px 80
1155px 80

Line thickness 0.0025× C pixels 120 240
0.005× C pixels 120

Number of shapes

5 48

240
6 48
7 48
8 48
9 48

Diameter/Side

C
7

120
240

C
10

120
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I.2 Finding: different resolutions have no impact on most VLMs’
performance

Fig. F29-a shows that VLMs are invariant to the resolution when asked to count
the overlapping shapes. This suggests that the image quality has almost no effect
on the performance, and VLMs cannot see the shapes.

384 769 1155
0.0

0.2

0.4

0.6

0.8

1.0

black colored
0.0

0.2

0.4

0.6

0.8

1.0

5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0

GPT-4o Gemini 1.5 Pro Claude 3 Sonnet Claude 3.5 Sonnet

Counting overlapping circles ###

(a) Resolution (b) Color (c) Number of shapes

384 769 1155
0.0

0.2

0.4

0.6

0.8

1.0

black colored
0.0

0.2

0.4

0.6

0.8

1.0

5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0

Counting overlapping pentagons DDD

Fig. F29: VLMs perform better on counting overlapping circles ### (top) than over-
lapping pentagons DDD (bottom). For most models, resolution (a) and colors (b)
have minimal impact on performance. Sonnet-3.5 performs better as the image size
increases (a). GPT-4o performs better on colored shapes than on black shapes.

I.3 Finding: color-coding does not generally help the VLMs

While we expect the color-coding to make the shapes more distinct for the
models, Fig. F29-b suggests that, except for GPT-4o, coloring the shapes has
an opposite effect on the performance of the models.
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I.4 Finding: Gemini-1.5 has the most biased predictions to the
Olympic logo

Fig. F30 shows the overall trend of the predictions among SOTA VLMs. Gemini-
1.5 (see Fig. F30b) tends to predict “5” significantly more often when asked to
count the circles, while its predictions are more random for pentagons. This
suggests the model’s bias toward the Olympic logo.

5 6 7 8 9
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

0.34 0.4 0.1 0.12 0.04
0.83 0.37 0.46 0.22 0.18

Pentagons
Circles
GT

(a) GPT-4o
5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

0.48 0.02 0.06 0.01
0.641.0

0.0 0.0 0.0 0.01

Pentagons
Circles
GT

(b) Gemini-1.5

5 6 7 8 9
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

0.0 0.02 0.06 0.0 0.01
1.0

0.26 0.04 0.18 0.01

Pentagons
Circles
GT

(c) Sonnet-3
5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

0.9 0.56 0.86 0.82 0.740.88 0.7 0.66 0.57 0.51

Pentagons
Circles
GT

(d) Sonnet-3.5

Fig. F30: Prediction trend for each VLM shows (a) GPT-4o has less variance in counting
circles versus pentagons, (b) Gemini-1.5 is biased to predicting the number of circles
to be 5, (c) Sonnet-3 tends to under count the number of shapes, and (d) Sonnet-3.5
has the least relative variance over both shapes.

Table T13: Frequency (%) of predicting “5” when there are more than 5 circles (#)
or pentagons (D), i.e., N = 6, 7, 8, 9 shapes in the image. For example, Gemini-1.5
predicts “5” circles 99.74% of the time but this tendency disappears in the case of
D(10.94%), showing a strong bias towards the 5-circle Olympic logo (among four
models).

# D # D # D # D
13.54 5.47 99.74 10.94 64.32 5.73 15.89 10.16
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I.5 Additional Examples

We provide examples of VLMs’ responses in Fig. F31.

Count the circles in the image. Answer with a number in curly brackets e.g.
{3}

0.5 0.1 769 0.5 0.1 384 0.5 0.1 1155 1 0.1 384 1 0.1 384 1 0.1 384

9 ✗ 6 ✗ 5 ✓ 8 ✗ 5 ✓ 8 ✓

5 ✗ 5 ✗ 5 ✓ 5 ✗ 5 ✗ 5 ✗

5 ✗ 5 ✗ 5 ✓ 8 ✗ 5 ✓ 8 ✓

8 ✓ 5 ✗ 5 ✓ 5 ✗ 5 ✓ 5 ✗

GPT-4o Gemini-1.5 Sonnet-3 Sonnet-3.5

Fig. F31: VLMs tend only count the correct number of shapes when the image includes
5 circles. This shows that their predictions are biased toward the actual Olympic logo.

How many circles are in the image? Answer with only the number in numerical
format.

0.5 0.1 384 1 0.1 1155 1 0.1 1155 0.5 0.1 769 1 0.14 769 1 0.1 769

5 ✓ 5 ✗ 7 ✗ 12 ✗ 11 ✗ 5 ✗

5 ✓ 5 ✗ 5 ✗ 5 ✗ 5 ✗ 5 ✗

3 ✗ 5 ✗ 5 ✗ 10 ✗ 10 ✗ 5 ✗

4 ✗ 6 ✓ 6 ✓ 10 ✗ 9 ✓ 7 ✓

GPT-4o Gemini-1.5 Sonnet-3 Sonnet-3.5

Fig. F32: Counting overlapped circles is not easy to VLMs regardless of circle colors,
line widths, and resolutions. Gemini-1.5 often predicts “5” regardless of the actual
circle count, suggesting a strong bias towards the well-known Olympic logo.
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J Counting the rows and columns of a grid task

J.1 Benchmark Construction Details

Our benchmark specifications consist of various parameters for the grid genera-
tion process.

– Image size: We include three different sizes {500, 1250, 2000} to create the
grids on the image.

– Number of rows/columns: We choose a base size N ∈ {3, 4, 5, 6, 7, 8, 9},
and initialize the sizes to N ×N , N ×N ′, and N ′ ×N where N ′ = N + 1.
We also create 10×10 grids to balance the square grids.

– Line thickness: We use a line thickness of 1% of the image size and 0.5%
of the image size.

– Entry: Each table is generated in two versions, one that includes blank
entries, and the second with random text entries.

We divide the image size by the number of rows and columns to find the co-
ordinates for drawing the borderlines. Then, we draw the lines on the four edges
of the image and draw the remaining lines in between. Our benchmark comprises
264 images of blank and text-containing grids (see Tab. T14 and Fig. F33).

Code The code is available at https://github.com/anguyen8/vision-
llms-are-blind/blob/main/src/CountingRowsAndColumns/Grids.ipynb.
Prompts

1. Count the number of rows and columns and answer with numbers in curly
brackets. For example, rows={5} columns={6}

2. How many rows and columns are in the table? Answer with only the numbers
in a pair (row, column), e.g., (5,6).

Groundtruth answers include both the number of rows and columns. An answer
is correct when both column and row counts are correctly predicted (random-
chance accuracy is 1/22, i.e., 4.55%).

https://github.com/anguyen8/vision-llms-are-blind/blob/main/src/CountingRowsAndColumns/Grids.ipynb
https://github.com/anguyen8/vision-llms-are-blind/blob/main/src/CountingRowsAndColumns/Grids.ipynb
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Table T14: BlindTest consists of 264 empty and text-containing grids. We create
equal number of images for each subcategory.

Parameter Values Samples Total Samples

Cell Empty 132 264Text 132

Image size (C)
500px 44

1321250px 44
2000px 44

Line thickness 0.005× C 66 132
0.01× C 66

Dimensions

3× 3 6

132

3× 4 6
4× 3 6
4× 4 6
4× 5 6
5× 4 6
5× 5 6
5× 6 6
6× 5 6
6× 6 6
6× 7 6
7× 6 6
7× 7 6
7× 8 6
8× 7 6
8× 8 6
8× 9 6
9× 8 6
9× 9 6
9× 10 6
10× 9 6
10× 10 6
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(a) blank (b) text

Fig. F33: We create grids with various sizes and line thicknesses. Each grid has a blank
(a) and text (b) version.
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(4,4) (4,5) (5,4)

Fig. F34: Empty and text-containing grids are generated with various image sizes.
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J.2 Finding: VLMs cannot reliably count either rows or columns

We expect counting rows and columns separately to be hard for the VLMs, thus
we analyze counting the rows and grids individually to see how VLMs perform.
As shown in Tab. T16, VLMs cannot count either rows or columns alone.

Table T15: Including text inside grids improves all model accuracies. Sonnet-3.5,
yet, outperforms other models on both empty and text-containing grids.

Grid Mean

Empty 26.13 26.51 25.00 59.84 34.37
Text 53.03 52.27 47.34 88.68 60.33

Mean 39.58 39.39 36.17 74.26 47.35

Table T16: Average row and column counting accuracy (%) of VLMs. VLMs perform
better at counting columns (70.53% accuracy) than counting rows (60.83%)—both of
which are far from the expected 100% accuracy.

Axis Mean

Rows 65.54 52.95 42.19 82.64 60.83
Columns 58.42 58.50 74.65 90.54 70.53
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J.3 Additional Examples

We show examples of models’ responses to the counting the number of rows and
columns task in Figs. F36 and F37.

Count the number of rows and columns and answer with numbers in curly
brackets. For example, rows={5} columns={6}.

GT 4×5 6×7 7×6 8×7 3×4 6×7
4×4 ✗ 6×6 ✗ 7×7 ✗ 6×6 ✗ 3×4 ✓ 7×7 ✗

5×5 ✗ 6×6 ✗ 7×7 ✗ 10×10 ✗ 3×4 ✓ 7×8 ✗

5×5 ✗ 7×8 ✗ 6×6 ✗ 9×9 ✗ 4×4 ✗ 7×7 ✗

4×5 ✓ 6×7 ✓ 7×7 ✗ 8×7 ✓ 3×4 ✓ 7×7 ✗

GPT-4o Gemini-1.5 Sonnet-3 Sonnet-3.5

Fig. F35: VLMs are often off by one or two in counting rows and columns in an empty
grid. The same is true when a grid is small (e.g ., 3×4) and contains a word in each
cell.

Count the number of rows and columns and answer with numbers in curly
brackets. For example, rows={5} columns={6}

GT 4×5 6×7 7×6 8×7 5×6 7×8
4×4 ✗ 6×6 ✗ 7×7 ✗ 6×6 ✗ 6×6 ✗ 6×6 ✗

5×5 ✗ 6×6 ✗ 7×7 ✗ 10×10 ✗ 5×6 ✓ 10×10 ✗

5×5 ✗ 7×8 ✗ 6×6 ✗ 9×9 ✗ 6×6 ✗ 9×12 ✗

4×5 ✓ 6×7 ✓ 7×7 ✗ 8×7 ✓ 5×6 ✓ 8×8 ✗

GPT-4o Gemini-1.5 Sonnet-3 Sonnet-3.5

Fig. F36: Examples from the benchmark show that models consistently fail at counting
rows and columns of empty grids. Sonnet-3.5, however, is more consistent in the lower
number of rows and columns.
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How many rows and columns are in the table? Answer with only the numbers
in a pair (row, column), e.g., (5,6).

GT 4×4 4×5 5×4 5×6 6×7 7×7
4×4 ✓ 4×5 ✓ 5×4 ✓ 5×6 ✓ 6×8 ✗ 7×8 ✗

4×4 ✓ 4×5 ✓ 5×4 ✓ 5×6 ✓ 6×8 ✗ 7×8 ✗

4×4 ✓ 5×5 ✗ 5×4 ✓ 6×6 ✗ 7×7 ✗ 8×7 ✗

4×4 ✓ 4×5 ✓ 5×4 ✓ 5×6 ✓ 6×7 ✓ 7×7 ✓

GPT-4o Gemini-1.5 Sonnet-3 Sonnet-3.5

Fig. F37: When text is included in the cells of the grid, the performance of all VLMs
improves, especially Sonnet-3.5.
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K Following single-colored paths task

K.1 Benchmark Construction Details

Our subway-like graphs are generated using a set of parameters defining the
characteristics of the plot.

– Image size: We use two different sizes {512, 1024}px for the images to
include various resolutions.

– Grid size: We assume a hypothetical grid on the image that determines
the position of the paths. We used an 18×18 grid, which means each path
segment is 1

18 of the image size.
– Number of stations: We use four station labels, {A, B, C, D}.
– Starting points: Each station in our maps has three different starting points

which are exactly 1
18 of the image size to one side of the stations.

– Path thickness: We use two line thicknesses, 10 and 20 pixels to have bold
and light visualizations of the same path.

– Number of paths: Considering the number of starting points in our setup,
each image can include stations from which exactly 1, 2, or 3 paths exit.

We keep generating the images until we have 15 samples for each number of
paths which results in 180 images (see Tab. T17 and Fig. F38).

Code The code is available at https://github.com/anguyen8/vision-
llms-are-blind/blob/main/src/SubwayMap/SubwayMap.ipynb
Prompts

1. How many single-colored paths go from {station 1} to {station 2}? An-
swer with a number in curly brackets, e.g., {3}.

2. Count the one-colored routes that go from {station 1} to {station 2}.
Answer with a number in curly brackets, e.g., {3}.

where the two stations are different and sampled from { A, B, C, D }.
Groundtruth answers are ∈ {1, 2, 3} (random-baseline accuracy: 33.33%).
Note that, to make the task easier, 0 is excluded from the groundtruth set (i.e.,
we never ask VLMs to count when no path exists between two given stations).

https://github.com/anguyen8/vision-llms-are-blind/blob/main/src/SubwayMap/SubwayMap.ipynb
https://github.com/anguyen8/vision-llms-are-blind/blob/main/src/SubwayMap/SubwayMap.ipynb
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Table T17: We create 2 different image resolutions, and 3 various line widths to have
balanced number of colored paths.

Parameter Values Samples Total Samples

Image size 512px 90 1801024px 90

Line thickness 10px 90 18020px 90

Paths
1 60

1802 60
3 60

Fig. F38: Images in our benchmark (left) have exactly 1, 2, or 3 paths exiting each
station. The hypothetical grids (right) are used when generating the paths.
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Fig. F39: On an invisible 18×18 grid (bottom right), we randomly generate random
paths from one station to another. All stations have an equal N = 1, 2 or 3 outgoing
paths.
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K.2 Finding: VLMs fail to see the colored paths across various map
complexities

1 2 3

0.74 0.53 0.33

0.96 0.51 0.26

0.2 0.46 0.28

0.93 0.58 0.23
0.0

0.2

0.4

0.6

0.8

1.0

Accuracy

Fig. F40: VLM accuracy decreases as the number of paths increases from 1 to 3.
Overall, counting colored paths poses a challenge to VLMs.
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K.3 Additional Examples

We show examples of models’ responses to the counting the number of single-
colored connecting paths in Fig. F41.

How many single-color paths go from A to B? Answer with a number in curly
brackets e.g. {3}

1 ✓ 1 ✓ 1 ✓ 2 ✗ 2 ✗ 0 ✗

2 ✗ 2 ✗ 3 ✗ 3 ✗ 1 ✓ 6 ✗

2 ✗ 2 ✗ 2 ✗ 2 ✗ 4 ✗ 2 ✗

1 ✓ 2 ✗ 1 ✓ 3 ✗ 1 ✓ 3 ✗

GPT-4o Gemini-1.5 Sonnet-3 Sonnet-3.5

Fig. F41: VLMs generally fail at images with more intersecting paths. As the number
of paths increases, models tend to make an educated guess, especially Gemini-1.5 and
Sonnet-3.5.

How many single-color paths go from A to C? Answer with a number in curly
brackets e.g. {3}.

GT 1 1 1 1 2 1
2 ✗ 0 ✗ 2 ✗ 3 ✗ 3 ✗ 1 ✓

2 ✗ 2 ✗ 4 ✗ 1 ✓ 2 ✓ 5 ✗

2 ✗ 2 ✗ 3 ✗ 2 ✗ 3 ✗ 3 ✗

1 ✓ 1 ✓ 3 ✗ 3 ✗ 2 ✓ 1 ✓

GPT-4o Gemini-1.5 Sonnet-3 Sonnet-3.5

Fig. F42: Some VLMs ( , , ) surprisingly fail in even extremely easy cases across
both line widths (leftmost). VLMs tend to perform worse as the number of paths
connecting stations increases.
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L VLM failures on real-world data

List out stations on a subway path.

User: This is a subway map. List out the stations between Chungmuro
and Wangsimni.

Gemini-1.5: Here are the stations between Chungmuro and
Wangsimni on this map, assuming you’re traveling along the dark blue
line:

– Dongdaemun History & Culture Park ✗

– Sinseol-dong ✗

– Jegi-dong ✗

Sonnet-3.5: Based on the subway map shown, the stations between
Chungmuro and Wangsimni are:

1. Chungmuro
2. Dongdaemun History & Culture Park
3. Sindang
4. Cheonggu
5. Sangwangsimni ✗

6. Wangsimni

Fig. F43: Examples of how VLMs fail on real-world data.
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Reading music sheets

User: What is the name of this
note?
Sonnet-3.5: The note indicated
by the pink arrow is F. ✓ This
can be determined by its position
on the musical staff - it sits on
the top line of the treble clef,
which corresponds to the note F.

User: Is the note on a line?
Sonnet-3.5: Yes, this note is on
a line. ✗ Specifically, it’s on the
third line from the bottom of the
treble clef staff. ✗

Reading NYC street map

User: Is Catherine St intersect-
ing with Market St?

GPT-4o: Yes, Catherine St does
intersect with Market St as shown
in the map ✗. They intersect near
the Alfred E. Smith Playground
and close to the Monroe St and
Cherry St intersections. ✗

Gemini-1.5: No, Catherine
St and Market St do not intersect
in this map. ✓

Fig. F44: Examples of how VLMs fail on real-world data.
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