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Abstract. In this supplementary material, we give further details of
the main paper. Architecture details including layers of the transformer
block and hyperparameter choices are given in Section 1. Implementa-
tion details are formulated in Section 2 and the procedures for encoding
sparse point clouds are illustrated in Section 3. Section 4 shows additional
experimental results.

1 Architecture Details

1.1 Transformer Block

Layer details of the transformer block of the feature-to-occupancy hierarchical
decoder are given in this subsection. The self-attn layer of Equation 4 is demon-
strated as:

self-attn(Yl−1) = cat(A1, · · · , AH)W self ,

where Ah = Attn(Yl−1W
Q
h , Yl−1W

K
h , Yl−1W

V
h ) ∈ RM×dH .

(1)

The cross-attn layer of Equation 5 is formulated as:

cross-attn(Y ′
l , zR−(l−1)) = cat(A1, · · · , AH)W cross,

where Ah = Attn(Y ′
l W

Q
h , zR−(l−1)W

K
h , zR−(l−1)W

V
h ) ∈ RM×dH .

(2)

The projections of both equations are parameter matrices

WQ
h ∈ RD×dH ,WK

h ∈ RD×dH ,WV
h ∈ RD×dH ,

W self ∈ RHdH×D,W cross ∈ RHdH×D,
(3)

where dH denotes the feature dimension in each head and H is the number of
attention heads.

Note that regardless of the different-resolution latent code inputs, decoder
weights are shared across all stages as the decreased resolutions disappear by
the key and value multiplication (KTV ) of attention layers.
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1.2 Hyperparameter Choices

Architecture hyperparameter choices for the main paper experiments are given
in this subsection. Refer to Section 3 of the main paper for a detailed description
of the symbols.

(Subsection 3.1) Hierarchical Latent Feature Code Set Encoder. From
a sparse voxelized input shape of resolution N = 128, R = 7 feature grids are
encoded, each with channels Ck = [1, 16, 32, 64, 128, 128, 128]. During training,
subsamples of size M = 10, 000 are used.

(Subsection 3.2) Feature-to-Occupancy Decoder. D = 12 is used for the
hidden dimension of the transformer decoder, and H = 8 attention heads are
used.

(Subsection 3.3) Occupancy Field Prediction. The MLP of the occupancy
field prediction consists of 6 fully connected layers.

2 Implementation Details

2.1 Implementations

The Adam optimizer is employed with an initial learning rate of 1 × 10−4 and
StepLR scheduler with parameters step_size = 50, gamma = 0.1. Training lasts
for 200 epochs with a mini-batch size of 4, and the computation is limited to
a single Nvidia V100 GPU for all models. The spatial positional embedding Y0

is initialized for each query point set using the Kaiming uniform distribution.
Implemented hyperparameters for hierarchical losses are tabulated in Table 1.

2.2 Datasets

We utilize the complete ShapeNet version 2 dataset, which consists of 13 cate-
gories. The original dataset contains triangle meshes, which were made water-
tight following the preprocessing method by [15], and were divided into training
and testing sets according to the split provided by [4]. Ground truth occupancies

Table 1: Hyperparameters. Implemented hyperparameters for hierarchical losses
are tabulated below.

l 1 2 3 4 5 6 7
λl 0.05 0.1 0.2 0.35 0.5 0.65 0.7
εl 0.1 0.08 0.06 0.04 0.01 0.005 0
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are calculated as boolean values using libraries 3. This process involves project-
ing points and mesh triangles onto a 2D plane, determining intersection depths,
counting ray-triangle intersections, and utilizing this data to determine the sta-
tus of each point.

2.3 Metrics

Formal definitions of all three metrics (IoU, F-Score, and Chamfer distance) used
for quantitative evaluations are provided below.

IoU. Intersection over Union (IoU) [8] measures how well volumes match, and
a higher value indicates better results. For all points that are inside or on the
predicted mesh Mpred and ground truth mesh MGT, volumetric IoU is defined
as the quotient of the two volumes’ intersection and their union:

IoU(Mpred,MGT) ≡
|Mpred ∩MGT|
|Mpred ∪MGT|

. (4)

F-Score. F-Score [6,12–14] measures the ratio of good predictions, and a higher
value indicates better results. With a distance threshold d, the F-Score is defined
as:

F− Score(d) =
2P (d)R(d)

P (d) +R(d)
, (5)

where P (d) and R(d) denote the precision and recall, respectively. Precision P (d)
quantifies the accuracy of reconstruction by the portion of reconstructed points
lying within distance d to the ground truth:

P (d) =
1

|R|
∑
r∈R

[
min
g∈G

∥g − r∥ < d
]
. (6)

Also, recall R(d) quantifies the completeness of reconstruction by the portion of
ground-truth points lying within distance d to the reconstruction:

R(d) =
1

|G|
∑
g∈G

[
min
r∈R

∥g − r∥ < d
]
. (7)

[·] is the Iverson bracket, and R and G indicate the reconstructed and ground-
truth point set, respectively. F− Score(d) has the property that if either P (d) →
0 or R(d) → 0, then F− Score(d) → 0. F-Score results reported in the paper use
a value of d = 1%, and implementation settings provided by [12].

3 https://github.com/autonomousvision/convolutional_occupancy_networks
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Chamfer distance. Chamfer distance [8] measures the average error of all
points, and a lower value indicates better results. For the predicted mesh Mpred

and ground truth mesh MGT, the Chamfer−L1 distance is defined as:

Chamfer−L1(Mpred,MGT) ≡
1

2|∂Mpred|

∫
∂Mpred

min
q∈∂MGT

∥p− q∥dp+

1

2|∂MGT|

∫
∂MGT

min
p∈∂Mpred

∥p− q∥dq,

(8)

where the surfaces of the two meshes are denoted by ∂Mpred and ∂MGT, re-
spectively. Additionally, the accuracy score and completeness score of Mpred

wrt. MGT is defined below:

Accuracy(Mpred|MGT) ≡
1

2|∂Mpred|

∫
∂Mpred

min
q∈∂MGT

∥p− q∥dp, (9)

Completeness(Mpred|MGT) ≡
1

2|∂MGT|

∫
∂MGT

min
p∈∂Mpred

∥p− q∥dq. (10)

Note that the Chamfer−L1 distance is the mean of Accuracy and Completeness
score.

3 Sparse Point Cloud Encoding

In this section, the encoding process of sparse point clouds is formulated (Subsec-
tion 4.4). It follows a similar procedure as encoding voxel inputs. After encoding,
the processes are identical to those illustrated in the main paper.

The sparse point cloud input shape X ∈ X , where X = RN×3, is first sub-
sampled into a set of “more sparse” point clouds via Farthest Point Sampling as

{Xk}k∈[1,...,R] = farthest-point-sampling(X), Xk ∈ RK×3. (11)
The sparse point clouds are then encoded into a set of multi-scale features with
a mini-PointNet-like module [11,16] as

∀k ∈ [1, . . . , R], Fk = PointNet(Xk), Fk ∈ FK
k . (12)

Fk ∈ RCk is a deep feature with channels Ck, K = N
2k−1 is the sparse point cloud

size varying with scale, and R is the number of features. Features of early stages
include local details of the shape while features of late stages capture global
structures.

Given a continuous query point q ∈ R3 from a query set Q ∈ RM×3, a
hierarchical latent feature code set is acquired by grid-sampling [5] the particular
location on each feature as

∀k ∈ [1, . . . , R], zqk = grid-sample(Fk, q) (13)

where zqk ∈ RCk and thus zk ∈ RM×Ck . Trilinear interpolation is used to align
continuous 3D points on the discrete features.
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4 Additional Results

4.1 Shape Reconstruction

Additional reconstruction results of diverse shapes from 13 categories of ShapeNet
[2] are visualized in Figure 1 and 2. Our method visualizes solid structures with
the inclusion of details, patterns, and subtle parts.

4.2 Point Cloud Completion

Per-Class Evaluations. In Table 2a, 2b, 2c, per-class evaluations of point
cloud completion are provided in terms of IoU, F-Score, and Chamfer distance,
respectively. The mean and std computed over all 13 ShapeNet categories are
indicated below the category measures. Our method is compared against OccNet
[8], ConvONet [10], IF-Net [3], SAP [9], POCO [1], and DCC-DIF [7]. Similar to
the results shown by voxel reconstructions, our method outperforms baselines by
nearly all measures. Additionally, it shows robustness between various categories
by revealing the smallest variance in all three metrics.
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Fig. 1: Reconstruction of shapes from various categories. From the top row,
shapes from categories: vessel, airplane, car, sofa, chair, lamp, table, bench, and riffle.
Please zoom in to see the details of the shapes.
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Fig. 2: Reconstruction of shapes from various categories. From the top row,
shapes from categories: vessel, airplane, car, sofa, chair, lamp, table, bench, and riffle.
Please zoom in to see the details of the shapes.
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Table 2: Point cloud completion accuracy by three measures.

(a) Point cloud completion accuracy under ShapeNet in terms of IoU (↑).

Category IoU ↑
OccNet ConvONet IF-Net SAP POCO DCC-DIF DHR (Ours)

Airplane 0.760 0.848 0.891 0.910 0.941 0.938 0.940
Bench 0.716 0.790 0.880 0.830 0.855 0.932 0.938
Cabinet 0.867 0.922 0.854 0.872 0.885 0.908 0.928
Car 0.835 0.876 0.911 0.928 0.912 0.918 0.935
Chair 0.736 0.852 0.873 0.851 0.840 0.889 0.911
Display 0.817 0.903 0.862 0.894 0.893 0.909 0.913
Lamp 0.566 0.792 0.878 0.888 0.917 0.917 0.924
Loudspeaker 0.828 0.913 0.849 0.807 0.849 0.920 0.944
Rifle 0.694 0.826 0.923 0.899 0.907 0.926 0.919
Sofa 0.872 0.923 0.881 0.909 0.895 0.931 0.963
Table 0.759 0.859 0.859 0.912 0.906 0.929 0.933
Telephone 0.915 0.942 0.843 0.911 0.949 0.905 0.930
Vessel 0.748 0.858 0.862 0.920 0.903 0.897 0.924
Mean 0.777 0.870 0.874 0.887 0.896 0.917 0.931
Std 0.089 0.047 0.023 0.035 0.033 0.014 0.013

(b) Point cloud completion accuracy under ShapeNet in terms of F-Score (↑).

Category F-Score ↑
OccNet ConvONet IF-Net SAP POCO DCC-DIF DHR (Ours)

Airplane 0.878 0.967 0.944 0.988 0.978 0.984 0.988
Bench 0.875 0.944 0.926 0.964 0.966 0.989 0.980
Cabinet 0.860 0.929 0.930 0.958 0.950 0.946 0.962
Car 0.775 0.833 0.874 0.976 0.912 0.950 0.971
Chair 0.772 0.929 0.945 0.961 0.958 0.967 0.959
Display 0.821 0.955 0.961 0.965 0.979 0.972 0.987
Lamp 0.627 0.910 0.881 0.871 0.940 0.977 0.964
Loudspeaker 0.862 0.880 0.935 0.951 0.956 0.971 0.984
Rifle 0.859 0.969 0.925 0.946 0.954 0.986 0.991
Sofa 0.747 0.942 0.902 0.981 0.973 0.970 0.994
Table 0.849 0.953 0.934 0.955 0.951 0.975 0.986
Telephone 0.948 0.987 0.968 0.966 0.963 0.959 0.979
Vessel 0.773 0.927 0.927 0.992 0.989 0.958 0.976

Mean 0.819 0.933 0.927 0.961 0.960 0.970 0.979
Std 0.077 0.041 0.027 0.029 0.019 0.013 0.011

(c) Point cloud completion accuracy under ShapeNet in terms of Chamfer distance (↓).

Category Chamfer distance ↓
OccNet ConvONet IF-Net SAP POCO DCC-DIF DHR (Ours)

Airplane 0.565 0.333 0.245 0.350 0.113 0.103 0.063
Bench 0.592 0.410 0.187 0.397 0.124 0.089 0.078
Cabinet 0.738 0.543 0.099 0.409 0.117 0.090 0.051
Car 0.981 0.802 0.231 0.519 0.135 0.054 0.042
Chair 0.890 0.494 0.158 0.475 0.131 0.112 0.089
Display 0.762 0.420 0.301 0.368 0.148 0.098 0.079
Lamp 1.350 0.645 0.106 0.520 0.138 0.125 0.090
Loudspeaker 1.169 0.647 0.243 0.520 0.128 0.118 0.057
Rifle 0.603 0.308 0.277 0.324 0.097 0.107 0.067
Sofa 0.695 0.456 0.313 0.413 0.138 0.135 0.074
Table 0.717 0.427 0.086 0.387 0.150 0.094 0.077
Telephone 0.411 0.295 0.256 0.225 0.100 0.109 0.081
Vessel 0.850 0.449 0.235 0.480 0.106 0.127 0.067
Mean 0.794 0.479 0.211 0.415 0.126 0.105 0.070
Std 0.247 0.142 0.074 0.084 0.017 0.020 0.014
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