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1 Relevance of our proposed solvers

We target calibrated egomotion estimation for visual odometry modules in mo-
bile platforms, focusing on the under-explored prior-free planar motion scenario
(e.g. robot navigation, autonomous driving). Introducing hybrid solvers enables
previously unavailable trade-offs between solver complexity, runtime, and solu-
tion quality (critical for online deployment). Given the ubiquity of stereo and
RGBD cameras, we analyze how varying degrees of 3D data integration into the
estimation process streamlines the resulting geometric formulation and affects
estimation quality due to now introducing 3D noise.

Egomotion estimation inputs frame-to-frame correspondences w/o an available
3D map. Hence, 3D-3D matches are obtained by feature tracking on sequences of
triangulated stereo pairs (e.g., KITTI [2]) or RGBD image pairs (e.g., TUM [5]).
Alternatively, 2D-3D matches may come from RGBD feature matching com-
bined with data decimation or arise naturally in mobile stereo capture with
partial FOV overlap. For situations where 3D data is unavailable, considering
pure 2D-2D matches renders our approach flexible. Our non-minimal solvers
elucidate how integrating additional 2D-2D matches can yield less complex and
faster planar solvers, with unique solutions in all cases.

2 Performance of our solvers vs SOTA

We illustrate the overall performance (error vs runtime) of all solvers in Figure 1.
The data for Figure 1 is sourced directly from Table 3, Table 4, and Table 5 of
the original submission (i.e., it is not from new experiments). On both KITTI 2]
and TUM [5], our 5-pt and 7-pt solvers achieve comparable results to 4pst0 [3]
but much faster, while our 6-pt solver is both more accurate and faster than
4pst0 [3]. On KITTI, our solvers (except hpcl) are dominated by the 6-DOF
Lambda Twist solver [4]. We attribute this to higher non-planarities present
in the dataset, which was also observed in [1,3]. However, on the more planar
TUM sequences, our hpc2, nm5, nm6, and nm7 solvers cluster near the bottom
left (low error and low runtime) and dominate most of the solvers, including
full DOF solvers, demonstrating that our solvers can outperform, both in accu-
racy and runtime, SOTA solvers in situations where the planar motion assump-
tion is better supported. Then, solver selection is contingent on the availability
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Fig. 1: Median errors vs RANSAC time. Data sourced from Tables 3, 4, and 5 of the
original submission. +: no plane prior, : plane prior, +: full DOF.

of 3D data and user preference of accuracy vs speed. Acknowledging poten-
tial implementation-specific optimizations, our MATLAB-based implementation
timings are intended for relative comparison of solver execution times. RANSAC-
based estimation on empirical data (subject to measurement noise and motion
model non-compliance) clearly exemplifies our solvers’ empirical performance
trade-offs.

3 Variations of Solver Formulations

In the original submission, we briefly discuss the engineering choices made to
implement our solvers. Here, we elaborate on the reasons of these choices and
their experimental justification.

Zero Trace Constraint Parameterization. As mentioned in the original sub-
mission, there are two possible ways to embed the zero trace constraint for planar
motion into existing essential matrix (E) estimators: 1) Stack the coefficients of
the zero trace equation into the matrix of epipolar constraints (9 parameters),
2) Replace one the diagonal elements of F with the negated sum of the other
two diagonal elements, e.g. e11 = —(eaz +€33) (8 parameters). To implement our
solvers, we chose option 2 based on the results of an experiment on synthetic
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data with 2D pixel noise, performed as described in the original submission.
The results are shown in Figure 2. The 7-point solver is marginally affected by
either parameterization, while the 6-point solver has similar performance, with
8 parameters performing slightly better. However, the 8 parameters parameter-
ization is significantly better for the 5-point point solver. Therefore, we use 8
parameters for all of our three non-minimal 2D-2D solvers.

Enforcement of Eigenvalues. As shown in the original submission we have
tr(E) = 0 for planar motion, and it is known that for all essential matrices
det(E) = 0. This implies that the eigenvalues of E for planar motion are of the
form [\, —\,0]. However, for imperfect input observations (e.g., corrupted by
noise), the estimated E (by non-minimal solvers) does not necessarily conform
to this structure. We considered enforcing this structure via eigendecomposition.
Let E = Qdiag(A1, A2, A3)Q ™Y, | A1]| > || A2l > [|As]], be the eigendecomposition
of E. Then, a conformant E can be reconstructed as E = Q diag(\, —\,0)Q 1.
We use the same setup as for the noisy synthetic experiments in the original sub-
mission, considering our three non-minimal 5-point, 6-point, and 7-point solvers,
with and without eigenvalue enforcement. The results are shown in Figure 3. We
observe that the solvers enforcing the eigenvalue form (denoted with an E) are
consistently worse than those without it. Therefore, we do not enforce the eigen-
value form in our solvers. Consequently, the estimated E may not have zero
trace (i.e., F is not exactly planar) in non-ideal conditions. Nevertheless, this is
not a problem as shown by our experimental results in the original submission.
Note that the singular value structure [o,o,0] of proper essential matrices is
automatically enforced when decomposing E into R and ¢.

4 Planar Scene Structure

We analyze the effect of coplanar input observations on our three non-minimal
2D-2D solvers by means of a noiseless synthetic data experiment. We consider
seven 3D points on a plane at Z = 10. Then, we move zero, one, two, and three
of these points a short distance outside of this plane, so the input observations
are comprised of seven, six, five and four coplanar points respectively. We test
for the 10,000 random planar poses in the synthetic dataset and the results are
shown in Table 1. Our three non-minimal 2D-2D solvers require that at least
one of the input points is not coplanar with the others.
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Fig. 2: Effect of 2D pixel noise considering 9 vs. 8 E parameters for our three non-
minimal 2D-2D solvers.
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Fig. 3: Effect of 2D pixel noise for our three non-minimal 2D-2D solvers with eigenvalue
enforcement (denoted by E) and without.
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Table 1: Mean orientation error (degrees) and relative translation error (%) for copla-
nar input observations to our non-minimal solvers. Failure cases highlighted in red.

4 coplanar 5 coplanar 6 coplanar 7 coplanar
deg % deg % deg % deg %

nmb (ours) 4.31e-07 1.92e-07 16.816  53.32 - - -
nm6 (ours) 3.74e-07 2.39e-10 3.89e-07 1.04e-09  15.06  47.61
nm?7 (ours) 3.89e-07 4.86e-12 3.88e-07 5.44e-12 4.28e-07 7.31e-11 16.10 67.67
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