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Code is made publicly available at: https://github.com/sinhasaptarshi/
EveryShotCounts. The repository contains the full train and evaluation code
and a demo for inference with a few videos.

In the following sections, we provide more qualitative results in Sec. 6. We
then provide additional ablations on the architecture’s choices (e.g. depth of
transformer and window size) in Sec. 7. Additionally, we evaluate the ability of
ESCounts to locate each repetition within the video in Sec. 8. We then com-
pare VRC to Temporal Action Segmentation (TAS) in Sec. 9 demonstrating
distinctions between the two tasks.

Additionally, following the release of the recent egocentric video counting
dataset OVR-Ego4D [3], we train and evaluate ESCounts on this newly in-
troduced dataset demonstrating the effectiveness of our method for egocentric
counting in Sec. 10.

Table 5: Impact of L.

L RMSE↓ MAE↓ OBZ↑ OBO↑

1 4.843 0.229 0.223 0.545
2 4.455 0.213 0.245 0.563
3 4.575 0.219 0.247 0.560
4 4.783 0.225 0.235 0.548

Table 6: Impact of L′.

L′ RMSE↓ MAE↓ OBZ↑ OBO↑

1 4.932 0.247 0.212 0.525
2 4.634 0.218 0.238 0.550
3 4.455 0.213 0.245 0.563
4 4.532 0.225 0.230 0.552

Table 7: Window sizes.

(t′, h′, w′) RMSE↓ MAE↓ OBZ↑ OBO↑

(3, 3, 3) 5.212 0.261 0.185 0.521
(2, 7, 7) 4.871 0.247 0.201 0.537
(4, 7, 7) 4.455 0.213 0.245 0.563
(7, 7, 7) 4.753 0.225 0.232 0.520

full 5.011 0.227 0.221 0.533

6 Qualitative Video and Extended Figure

We provide a compilation of videos on our website https://sinhasaptarshi.
github.io/escounts/ showcasing our method’s Video Repetition Counting
(VRC) abilities over a diverse set of 20 videos from all 3 datasets. Videos are
shown alongside synchronised ground truth and predicted density maps. The
test set from which each video is sampled is also shown.

We additionally extend Fig. 5 in the main paper with more examples from
all datasets in Fig. 7.

7 Further Ablations

We extend the ablations in Sec. 4.3, report results over different L and L′, and
analyse the impact of windowed-self attention on the performance of ESCounts.

https://github.com/sinhasaptarshi/EveryShotCounts
https://github.com/sinhasaptarshi/EveryShotCounts
https://sinhasaptarshi.github.io/escounts/
https://sinhasaptarshi.github.io/escounts/
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(a) RepCount

(b) Countix

Fig. 7: Additional qualitative results.
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(c) UCFRep

Fig. 7: Additional qualitative results (continued).

Impact of L. We ablate L i.e. the number of layers in the cross-attention block.
Increasing L increases the number of operations that discover correspondences
between the video and the selected exemplars. As seen in Tab. 5, while low L
causes a drop in performance, high L can also be detrimental probably due to
overfitting. L = 2 gives the best results for the majority of the metrics.

Next keeping L = 2 fixed, we vary L′ in Tab. 6. L′ is the number of windowed
self-attention layers in the self-attention block. L′ = 3 gives the best results
across all the metrics. Similarly, increasing or decreasing L′ drops performance
gradually.
Self-attention vs Windowed Self-attention. Motivated by [9], we use win-
dowed self-attention for the decoder self-attention blocks. Given spatio-temporal
tokens T ′ × H ′ × W ′ × C, windowed self-attention computes multi-headed at-
tention for each token within the immediate neighbourhood using 3D shifted
windows of size t′ × h′ × w′, where t′ ≤ T ′, h′ ≤ H ′ and w′ ≤ W ′. We ablate
on various (t′, h′, w′) values in Tab. 7. Note that for t′ = T ′, h′ = H ′, and
w′ = W ′ denoted as full, standard self-attention is used where each token at-
tends to every token. As shown, the best performance is obtained with window
size (4, 7, 7), demonstrating the importance of attending to tokens in immediate
spatio-temporal neighbourhoods only. We found variations in the value of t′ to
have the largest performance impact with decreases as the value of t′ changes.
Sampling Rate for Encoding. As stated in the implementation details, we
sample every four frames from the video to form the encoder inputs. We ablate
the impact of the sampling rate in Tab. 8. As shown, denser sampling is key for
robust video repetition counting. Reducing the sampling rate steadily decreases
performance as relevant parts of repetitions may be missed.
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Table 8: Impact of sampling rate

Sampling every
n frames RMSE ↓ MAE ↓ OBZ↑ OBO↑

4 4.455 0.213 0.245 0.563
8 5.112 0.268 0.221 0.521
16 5.911 0.296 0.185 0.482
32 6.562 0.346 0.156 0.444

Table 9: OBO, parameters, and training and inference speeds on UCFRep.
Metrics obtained by the public available codebase of [11] are denoted with ∗.

Method OBO↑ #Trainable
params (M)

Train set ↓
(sec/sample)

Test set ↓
(sec/sample)

Context [11] 0.790 47.6∗ 1.171∗ 1.818∗

ESCounts 0.731 21.1 (-26.5) 0.138 (-1.033) 0.141 (-1.677)

Model Size and Speed For UCFRep [11], [11,12] achieve better performance
than ESCounts. However, this performance is achieved by having more trainable
parameters, as [11, 12] finetune the encoders on the target dataset. We use the
provided codebase from [11] and benchmark the average number of iterations per
second for a full forward and backward pass over the entire training set. Addi-
tionally, we report inference-only average times on the test set. We use the same
experiment set-up described in Sec. 4.1 and report speeds in Tab. 9. Training
ESCounts is ∼8× faster. Interestingly, ESCounts maintains its efficiency even
during inference with ∼12× faster times than Context [11] which uses iterative
processing. Note that [12] could not be used for this analysis as their code for
training with UCFRep is not publicly available.

8 Repetition Localisation

Fig. 8: Localisation metric J .
We identify local maxima in d̃ and
threshold peaks higher than r to re-
move noise. J is then computed be-
tween the annotated start-end times
and the thresholded peaks.

VRC metrics only relate predicted to cor-
rect counts, regardless of whether the rep-
etitions have been correctly identified. We
thus investigate whether the peaks of the
predicted density map d̃ align with the an-
notated start-end times of repetitions in the
ground truth. Following action localisation
methods [1, 5, 8], we adopt the Jaccard in-
dex J for repetition localisation. As the val-
ues of d̃ peaks vary across videos, we apply
thresholds θ relative to the maximum and
minimum values, r = θ(max(d̃) − min(d̃)).
We find all local maxima in d̃ and only keep
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Table 10: Repetition localisation results on RepCount measured as the mAP
(%) over different Jaccard index relative thresholds r.

Method θ values for relative threshold r
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Avg

Baseline [6] 38.59 37.46 35.02 32.55 30.40 26.97 22.66 17.22 12.17 28.12
ESCounts 38.83 38.64 38.07 37.44 35.82 33.43 30.76 27.52 20.85 33.48

those above threshold r. We consider a repe-
tition to be correctly located (TP) if at least
one peak occurs within the start-end time of that repetition. Peaks that occur
within the same repetition are counted as one. In contrast, peaks that do not
overlap with repetitions are false positives (FP) and repetitions that do not over-
lap with any peak are false negatives (FN). We then calculate J as TP divided
by all the correspondences (TP + FP + FN) as customary.

In Tab. 10 we report the Jaccard index over different thresholds alongside
the Mean Average Precision (mAP) on RepCount. We select TransRAC [6] as a
baseline due to their publicly available checkpoint. Across thresholds, ESCounts
outperforms [6] with the most notable improvements observed over higher thresh-
old values. This demonstrates ESCounts’ ability to predict density maps with
higher contrast between higher and lower salient regions. For 0.9, 0.8, and 0.7
thresholds ESCounts demonstrates a +8.68%, +10.30%, and +8.10% improve-
ment over [6].

Table 11: Comparison between ESCounts and TAS baseline on close and
open-set RepCount setting.

Task Method benchmark open-set
MAE↓ OBO↑ MAE↓ OBO↑

TAS GTRM [7] 0.527 0.159 1.000 0.000
TriDet [10] 0.603 0.232 1.000 0.000

VRC ESCounts 0.213 0.563 0.436 0.519

9 Distinction between VRC and TAS

Unlike Temporal Action Segmentation (TAS) methods, VRC methods can gen-
eralise to unseen action classes. In Tab. 11 we compare ESCounts to a TAS
method [7] on the RepCount benchmark (close-set) and open-set setting. As
shown, [7] can only localise the actions of a pre-defined set of categories with
which the model was trained. In contrast, VRC is learned as an open-set task.
As ESCounts uses a learnt latent to encode class-independent repetition embed-
dings, it effectively generalises to unseen categories. In addition, ESCounts can
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Table 12: Results on OVR-Ego4D.† indicates results have been copied from [3].
(V) corresponds to vision-only models and (V+L) to vision and language models.

Modality Method RMSE ↓ MAE ↓ OBZ↑ OBO↑

V RepNet [2] † 3.20 0.74 0.19 0.43
ESCounts 2.41 0.32 0.30 0.68

V+L OVRCounter [3] † 1.60 0.35 0.29 0.66

...

... ...

...

Fig. 9: Qualitative results of ESCounts on OVR-Ego4D. For the selected videos, we
show both ground truth (GT) and predicted (P) density maps along with the counts.
Note that for OVR-Ego4D, we do not have temporal annotations for individual repe-
titions. Therefore similar to Countix, we show pseudo-labels as the GT density maps.

better handle large variations in repetition durations that are present in VRC
videos compared to [7], which as noted by [6] is a weakness of TAS methods.

10 Results on egocentric VRC

The recently-introduced OVR-Ego4D [3] is an Ego4D [4] subset containing clips
of repetitive egocentric actions, e.g . cutting onions, rolling dough. It comprises
50.6K 10-second clips with 41.9K train and 8.7K test clips. Annotations are only
provided for the number of repetitions and not the individual start and end times
per repetition. Thus, similar to Countix, we define pseudo-labels to estimate the
density maps. We evaluate ESCounts on OVR-Ego4D in Tab. 12. Compared to
the vision-language-based OVRCounter, [3] ESCounts improves OBZ, OBO, and
MAE, with only visual inputs, without any language input in training or infer-
ence, showing ESCounts’ effectiveness for the domain of egocentric counting. We
also add some qualitative results in Fig. 9. Similar to results on other datasets,
ESCounts predicts accurate counts a over diverse range of counts. The peaks of
individual repetitions are not as clear, due to the pseudo-labels, but ESCounts
correctly finds the OBO counts in each case.
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