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In this supplementary material, we provide notations of symbols, training
details, additional experiments and analyses, as well as sample visualizations.
Due to space constraints, these elements are not included in the main paper.

A Notations of Symbols

Table 1: Table of Notations

Notation Description

D0 Initial dataset
Dt Dataset at time t
Twarmup Number of warmup epochs
T Total number of epochs for the DA2 stage
fs Student classifier
ft Teacher classifier
θs Weights of the student classifier
θt Weights of the teacher classifier
Aϕ() Augmenter
ϕ Weights of the augmenter
α EMA decay rate
λ Weight that determines the influence of the teacher
ηs Learning rate for the student classifier
ηϕ Learning rate for the augmenter
x̂ Original sample from D0

LT_S Teacher-student loss
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Table 1: Table of Notations (continued)

Notation Description

LSWD Loss based on Sliced Wasserstein Distance
Lg Regularization loss on the squared outputs of fs
CE(·) Cross-entropy loss function
SWD(, ) Sliced Wasserstein Distance between two point clouds
EMD(, ) Earth Mover’s Distance between two point clouds
Rθi A linear projection onto direction θi
Laug Total loss for training augmenter
Thresholdc Threshold of class c
rh Upper ratio of threshold
rl Lower ratio of threshold
γ Decay rate controlling threshold decrease
µc Average of true positive prediction scores for class c

B Training Details

B.1 Warm-up

To prevent the teacher model from erroneously guiding the augmenter to produce
inappropriate samples during the early training stages, we initialize the teacher
model with a warm-up phase. During this phase, we do not use the proposed
augmentation; instead, the student classifier is trained solely on the original
dataset D0, while the teacher classifier copies the weights of the student classifier.
After this warm-up stage, we then employ our augmenter and begin updating
the teacher with Exponential Moving Average (EMA).

B.2 Accumulated Augmentation Degree Flow

Fig. 1. Accumulated Degree Flow. The color spectrum represents the Accumulated
Augmentation Degree. Samples that are filtered out by CDTS will be replaced with
their original form from D0, denoted as a reset operation. N is the size of the dataset.
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Figure 1 illustrates the changes in the dataset during the interaction between
our degree-accumulated augmentation and Curriculum Dynamic Threshold Se-
lection (CDTS). The initial input is the original dataset D0. After augmentation,
all samples gain an augmentation degree. These samples are then filtered through
the CDTS process, where qualified samples are retained, and unqualified samples
are replaced with their original form from D0. In D1, the blue color represents
the samples that were filtered out and reset.

This approach ensures that we do not continuously increase the number of
samples and, consequently, the training cost. However, we can still learn from
samples of varying difficulties. This design guarantees that the model learns the
original data well despite continuous augmentation. The filtering mechanism
ensures the model masters simple samples before moving on to more challenging
ones.

B.3 Algorithm

To better understand the proposed method, we provide the following algorithm
1, detailing the implementation step-by-step.

C Additional Experiments and Analysis

C.1 Additional Experiments

We provide the additional comparison of different data augmentation methods
on the PB_T50_RS of ScanObjectNN (SON) [4] and ModelNet40 (MN40) [6]
datasets as shown in Table 2. Remarkably, our DA2 has achieved an impressive
overall accuracy (OA) of 86.6% with PointNet++ [2] and 86.3% with DGCNN [5]
on the SON dataset. This shows a margin of 2.9% and 2.7% over the nearest
competitor SageMix [1]. However, our DA2 achieves comparable OA on the
simpler MN40 dataset.

Table 2. Overall Accuracy (%) of data augmentation methods.

Classifier Augmentation SON [4] MN40 [6]

PointNet++ [2]
+SageMix [1] 83.7 93.3

+PointCutMix-K [7] 82.8 93.4
+DA2 (ours) 86.6 92.4

DGCNN [5]

+PointMixSwap [3] - 93.5
+SageMix [1] 83.6 93.6

+PointCutMix-K [7] 82.9 93.1
+DA2 (ours) 86.3 92.6
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Algorithm 1 Training procedure of (DA2)
Require: Dataset D0, warmup epochs Twarmup, total epochs T , student classifier fs

with weights θs, teacher classifier ft with weights θt, augmenter with weights ϕ,
EMA decay rate α, loss weight λ, learning rate ηs for student, learning rate ηϕ for
augmenter

Ensure: Trained student classifier fs, trained teacher classifier ft
1: Warmup Stage:
2: for t = 0 to Twarmup do
3: Train fs with D0

4: Lcls = CE(fs(x̂), y), x̂ ∈ D0

5: Update student classifier: θs ← θs − ηs∇θsLcls

6: Update teacher classifier: θt ← θs
7: end for
8: DA2 Stage:
9: for t = 0 to T do

10: Input current dataset Dt (same size as D0)
11: 1. Training Augmenter:
12: x′ = Aϕ(x), x ∈ Dt

13: LT_S = |1− exp(CE(fs(x
′), y)− λ ∗ CE(ft(x

′), y))|
14: LSWD = SWD(x̂, x′)
15: Lg = ||fs(x′)2||
16: Laug = LT_S + LSWD + Lg

17: Update augmenter: ϕ← ϕ− ηϕ∇ϕLaug

18: 2. Curriculum Dynamic Threshold Selection:
19: x′ = Aϕ(x), x ∈ Dt

20: if (fs(x
′)) < Threshold then

21: x′ ← x̂
22: end if
23: Form new dataset Dt+1

24: 3. Student and Teacher Updating
25: Lcls = CE(fs(x), y), x ∈ Dt+1

26: Update student classifier: θs ← θs − ηs∇θsLcls

27: Update teacher classifier: θt ← αθt + (1− α)θs
28: end for

C.2 Visualization in Feature Space

To take a closer look at the behavior in feature space, we test our method using
two classes as an example. In this experiment, we visualize the point cloud of
the augmentation process to generate degree-accumulated multiple versions of
an original "nightstand" sample, as shown in Fig. 2. From the feature space
distribution, it is evident that one-step augmentation is insufficient to move
away from the original samples. In contrast, by accumulating augmentations, our
method explores a more diverse range and generates variant samples, leaving
the original distribution while approaching the feature distribution of the other
class. When the augmented samples move too far from their class distribution,
CDTS pulls them back to the original point, preventing the generation of out-of-
distribution samples.
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Fig. 2. We use PCA to visualize features on image. Augmentation process of two classes
in the feature space, where each point represents a feature of a point cloud. To aid
understanding of the augmentation level, we visualize their original point clouds. The
visualization shows that the augmented feature points continue to explore the space
until the two classes are nearly adjacent, suggesting the formation of a compact decision
boundary.

Moreover, we can observe that after resetting to the original form, subsequent
augmentations explore different directions, showcasing our method’s ability to
explore multiple directions and expand the exploration space. This behavior
is also evident in the other class, where our method significantly broadens the
distribution of the class through accumulated augmentations. In summary, our
approach significantly enhances the exploration space. With the assistance of the
teacher-guided auto augmenter and CDTS, augmented samples are controlled to
avoid over-augmentation that may lead to misclassification.

C.3 Additional Ablation Study on Losses

To demonstrate that the effectiveness of our method is not solely based on the
loss functions, we extended the ablation study from the main paper. We evaluated
Lg and LSWD with and without using DA2 + CDTS, analyzing the interaction
between these two losses and our method.

From Table 3, it is evident that both Lg and LSWD effectively improve model
performance. When our framework (DA2 +CDTS) is not used, augmentations
are not accumulated, meaning the augmentation takes only one step. In this
case, Lg is very effective, providing a repulsive force that effectively expands the
distribution in this single step. However, adding LSWD limits this single-step
augmentation, making the training results closer to those without these losses.

When DA2 is introduced, the model can perform more steps of augmentation.
However, taking more steps significantly increases the risk of generating unsuitable
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Table 3. Interaction between Losses and DA2 with CDTS

TA LT_S DA2 + CDTS LSWD Lg OA mAcc

✓ ✓ 87.37 85.81
✓ ✓ ✓ 87.47 85.23
✓ ✓ ✓ 87.96 86.41
✓ ✓ ✓ ✓ 87.54 85.66

✓ ✓ ✓ ✓ 86.81 84.80
✓ ✓ ✓ ✓ 87.68 85.46
✓ ✓ ✓ ✓ ✓ 88.55 87.37

training samples, leading to learning in the wrong direction. This causes a
performance drop when using either LSWD or Lg alone. However, when both
losses are present, along with DA2 and CDTS, Lg helps the augmentation expand
in a more generalized direction, while LSWD provides sufficient constraints,
resulting in the best performance.

This table also shows that each element in our design supports each other
and is meaningful. Also, all these components must coexist to create a robust
framework that ensures effective and balanced augmentation, achieving the best
performance.

D Additional Visualization of Point Clouds

We visualize the augmented samples generated with our method, shown in Fig. 3.
These accumulated samples are all extracted from the same 10 consecutive epochs.
It can be observed that the accumulated degree varies for different samples within
each epoch. When an augmented sample reverts back to the original sample, it
indicates that the sample is too challenging and has been filtered out by the
CDTS stage.

For example, the second one (chair) and the fifth one (car) continue to accu-
mulate augmentations over ten epochs, indicating that the classifier is capable of
learning from these augmented samples. Although the changes between successive
epochs are not significant, the shape changes considerably after several epochs,
demonstrating the effectiveness of our method. Moreover, the smooth variation
in shape creates a smooth learning curve, enabling the classifier to learn difficult
features. The sixth one (person) shows that in the initial iterations, all samples
remain in their original form, indicating that the model has not yet learned this
sample well. As a result, it is filtered out by our CDTS. Once the model has
learned the sample, it starts accumulating augmentations to tackle more difficult
variations. If the sample becomes too difficult to learn, it resets to the original
data.
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Fig. 3. Visualizations of augmented samples generated with our method. The correlation
between the accumulated degree and the color scale is illustrated in the figure.
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