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Section 1 shows the detailed derivations of the closed-form expressions of q(xt|x0)
and q(xt−1|xt, x0).
Section 2 shows more implementation details.
Section 3 shows the comparison between DiffLoss and previous loss functions.
Section 4 shows the details of the dataset.

1 The full derivations

In this section, we shows the detailed derivations of closed-form expressions for
the marginal1 distribution q(xt|x0) and the reverse diffusion step q(xt−1|xt, x0),
which is directly given in the main body for conciseness.
Marginal distribution q(xt|x0). For t = 1, we have ᾱ1 = α1, which reduces
to be consistent with single-step diffusion transition kernel q(xt|xt−1):

q(x1|x0) = N(x1;
√
α1x0, (1− α1)I). (1)

The transition kernel q(xt|x0) = N(xt;
√
ᾱtx0, (1− ᾱt)I) can be further writ-

ten as
xt =

√
ᾱtx0 +

√
1− ᾱtε,whereε ∼ N(0, I). (2)

Then by applying a single-step diffusion transition kernel q(xt|xt−1) to the above,
we get

xt+1
(1)
=

√
αt+1xt +

√
1− αt+1ε

(2)
=

√
αt+1

√
ᾱtx0 +

√
αt+1

√
1− ᾱtε+

√
1− αt+1ε

(3)
=

√
ᾱt+1x0 +

√
αt+1 − ᾱt+1ε+

√
1− αt+1ε

(4)
=

√
ᾱt+1x0 +

√
1− ᾱt+1ε

∼ N(xt;
√
ᾱt+1x0, (1− ᾱt+1)I).

Reverse diffusion step expressions. Training and derivation are performed
via optimizing the usual variational bound on negative log likelihood. Readers
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interested in the derivation can refer to Ho et al . [6] for a thorough understanding
of the formulation.

2 More implementation details.

We train the baseline network from scratch with L1 loss and our DiffLoss, re-
spectively, where our DiffLoss obviously surpasses the baseline with L1 loss. The
training performance curve with and without DiffLoss in the second setting is
shown in Fig. 1. Obviously, equipped with our DiffLoss, the baseline network
converges more quickly and achieves higher performance.

Fig. 1: Graph of PSNR with/without DiffLoss during training process of MSBDN [4]
on Dense-Haze [1] dataset.

3 Comparison between DiffLoss and previous loss
functions

In this section, we briefly introduce the commonly-used loss functions (L1, Per-
ceptual, and Adversarial loss) in image restoration task, analyse their difference
with our DiffLoss, and present quantitative and qualitative comparisons.For the
setting of these commonly-used loss functions, we follow [3,5].
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3.1 Commonly-used loss functions.

L1 Loss. The L1 loss is used to constrain the per pixel distance of the output
dehazed image and its ground-truth.

L1 = ∥x− z∥1 , (3)
Ltotal = L1, (4)

Perceptual Loss. The perceptual loss function is defined using high-level fea-
tures extracted from a pre-trained convolutional network. Instead of encouraging
the output dehazed image to be exactly the same as its ground-truth in the pixel
domain, the perceptual loss aims to encourage it to have similar a feature rep-
resentation in the backbone network. Specifically, following [3, 5], we use the
VGG16 [7] pre-trained on ImageNet [2] as the loss network to measure percep-
tual similarity.

Lper =

3∑
j=1

1

CjHjWj
∥ϕj (x)− ϕj(z)∥22 , (5)

Ltotal = ∥x− z∥1 + γLper, (6)

where Hj , Wj and Cj denote the height, width, and channel of the feature map
in the j-th layer of VGG16, ϕj is the activation of the j-th layer. x and z are
respectively the ground truth image and our dehazed result. γ is set to 0.001.
Adversarial Loss. The adversarial loss is defined based on the probabilities of
the discriminator D(z) over the dehazed image z as:

Ladv =

N∑
n=1

− logD (z) , (7)

Ltotal = ∥x− z∥1 + γLadv, (8)

where, D(z) is the probability of reconstructed image z to be a haze-free image,
and γ is set to 0.005.

3.2 Their difference with the DiffLoss.

Previous loss functions have the following limitations: (1) L1 works in pixel
space, which may produce images deviated from natural distribution. (2) The
VGG16 used in perceptual loss is pre-trained for high-level task, instead of low-
level image restoration task. (3) Adversarial loss treats restoration network as
generator and inserts an additional discriminator network. While, adversarial
loss needs to train a discriminator for every restoration dataset, which is trou-
blesome and time-consuming. In contrast to these optimization functions, our
DiffLoss is tailored for image restoration task and works in a plug-and-play man-
ner to existing image restoration networks and datasets. DiffLoss can empower
restoration networks with better perceptual quality as well as better semantic
recovery.
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Fig. 2: Visualization of the color map (top) and structure map (bottom) for samples
from Dense-Haze [1] with MSBDN [4] as baseline.

4 Details of Datasets

We use LOL dataset for low-light image enhancement, which consists of 450
pairs of training images and 50 pairs of testing images. For image derain, we
use Rain13K dataset for training, which includes 13,712 pairs of training images
collected from multiple datasets, and use Rain100H for testing, which includes
100 pairs of testing images. We use Dense-Haze dataset for image dehazing,
which consists of 50 pairs of training images and 5 pairs of testing images.

The CUB datasets, which is used for image classification, contains 11,788
images of 200 subcategories belonging to birds, 5,994 for training and 5,794 for
testing.
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