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Supplementary Material

A Subsampled GEI (Gs)

Gait recognition faces significant challenges due to speed variations among indi-
viduals, a concern that complicates the analysis beyond intra-individual discrep-
ancies to inter-individual variations observed across diverse video instances. To
enhance the model’s resilience to these speed variations, it’s crucial to develop
an ability to identify gait characteristics across various speeds. One strategy in-
volves creating a representation of the gait at a faster speed and integrating the
learning of its features with those of the standard speed gait sample. By selecting
frames at a particular rate from a video of gait samples, we can generate an accel-
erated gait sequence (for example, by choosing every other frame). However, we
opted not to directly incorporate this accelerated sequence (the selected frames)
into our attention mechanism due to the high spatial and temporal complexity
involved in processing attention. Moreover, adding the accelerated sequence to
the attention module would lead to redundancy, as these frames are essentially
included within the Frame Wise Silhouettes (F).

Hence, we have generated subsampled gait energy image (GEI) from these
sampled frames by averaging frames present in the accelerated gait sequence
(refer to Fig. 1) named as Gs. Given F = {fi | i = 1, 2, . . . , T}, and fi ∈ RH×W

is the ith frame of the input gait sequence. We derive Gs = 1
T

∑T
i=1
i+=2

fi. This
strategy is particularly effective as Gs significantly diverges from the conventional
Gait Energy Image (GEI), capturing unique speed-related information nuances.
The rich, speed-specific insights within Gs offer a substantial boost to our model’s
robustness and its capacity to differentiate between gaits. Incorporating Gs into
our model (by adding just one extra frame) is efficiently compatible with the
attention mechanism. This addition contributes to a manageable increase in
processing while significantly improving the model’s consistency and accuracy
in recognizing gaits across various speeds, as illustrated in Fig. 1.
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Fig. 1: Subsample GEI: First row shows that all frames selected for generating Go

and the respective generated Go. While the second row shows that the alternate frames
are skipped for generating Gs and respective generated Gs. One can observe that Gs

captures the dynamic information representing the gait sample at accelerated speed so
as to address speed variations.

B GEI based Silhouette Mask Annealing

In gait recognition, not all regions within a silhouette are equally significant. It
is the dynamic regions that harbour the essential characteristics for recognizing
gait patterns. The GEI is computed as the average of all the silhouettes from a
gait video, encapsulating holistic and dynamic information of the gait sequence.
Hence, we exploit the dynamic cues present in the GEI to discern the dynamic
(salient) regions within the silhouettes.

Each silhouette from the gait video represents a binary image, where pixel
intensity is either 0 or 255. Therefore, when averaged across the entire video, the
pixel values in the GEI can range between 0 and 255. If at a specific pixel, all
silhouettes possessed a value of 255, the corresponding pixel in the GEI would also
exhibit a value of 255, indicating that the pixel was static across the silhouettes.
The region having such pixels is termed as foreground. In contrast, if at a certain
pixel, some silhouettes had a value of 0 while others had a value of 255, the GEI
pixel value would fall between 1 and 254, signifying a dynamic pixel due to
the movement observed across the silhouettes. The region having such pixels is
termed as boundary.

We derive an initial binary mask (m0-GEI) from the GEI by setting the fore-
ground regions to 0 and the boundary regions to 1. The background regions are
already 0. This mask is then iteratively refined to m1-GEI and m2-GEI through
the application of dilation (c.f. Fig. 2). Following the completion of Stage I and
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Fig. 2: The masking strategy utilised to focus on key regions. Firstly the GEI is com-
puted from FWSs. Then we compute mask m0 from GEI by setting static regions to 0
and dynamic regions to 1. This mask is refined to m1 and m2 by dilating m0. Finally,
each of these masks are applied to the FWSs and fine tuning happens in a step-wise
manner, as marked under arrows in yellow color.

II training (refer section 4.1 and 4.2 of the paper), we further accentuate the
model’s focus on dynamic contours by generating silhouettes (F) with the static
regions’ pixel intensity set to 0. This is achieved by multiplying the created
masks (m0,m1,m2-GEI) on each silhouette in a gait video to produce a masked
silhouette.

The GaitW undergoes fine-tuning in a step-wise manner. Initially, the m2-GEI
mask is applied to the frames, and the model is fine-tuned using these masked
frames. This fine-tuning process is subsequently repeated with the m1-GEI, and
finally, the (m0-GEI) mask. Each step involves applying the respective mask to
the silhouette frames, thereby progressively refining the model’s focus on the
most informative and dynamic regions of the gait. This iterative method ensures
that GaitW increasingly emphasizes the critical dynamics of gait, such as limb
movements while diminishing the impact of static elements.

Gallery NM#1-4 Angles from 0◦-108◦

Method 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ Mean
Stage I and stage II only 93.5 96.9 96.2 96.0 92.5 91.4 93.2 96.1 96.2 95.0 87.4 94.0
Fine− tuning(1) (m2 mask) 94.0 97.1 96.5 96.4 93.2 92.1 93.5 96.5 96.4 95.0 88.3 94.4
Fine− tuning(2) (m1 mask) 94.0 97.3 96.8 96.3 93.5 92.4 93.6 96.4 96.4 95.1 88.5 94.6
Fine− tuning(3) (m0 mask) 94.2 97.7 97.0 96.3 93.7 92.1 93.8 96.7 96.8 95.4 89.7 94.9

Table 1: Rank-1 accuracy (%) on CASIA-B on all angles, CL#1-2 conditions, under
LT-74 setting of three step-wise mask fine-tuning steps and the only stage I and stage
II training.
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With each step of fine-tuning, there is an observed enhancement in the ac-
curacy of the GaitW, as documented in Tab. 1, highlighting the improvement in
accuracy following each fine-tuning phase.

C Complete results on CASIA-B

Data-set Specifications: Due to space constrains we have excluded some re-
sults (ST and MT settings) on CASIA-B, which we are reporting in Tab. 3, Tab. 5
and Tab. 4. The CASIA-B dataset has total 124 subjects and for each subject
data is collected in 10 groups. Six groups are classified to normal walking con-
dition (NM01-NM06). Two of the groups are classified as person wearing coat
as a walking condition (CL01-CL02) and remaining two are are classified into
person holding bag as a walking condition (BG01-BG02). Each group is further
divided into 11 angle, for cross view angle setting ranging from 0° to 180° with
an interval of 18°. Hence, there are a total of 124 subjects × 10 groups × 11
view angles = 13,640 gait sequences in CASIA-B.
Training and testing methodology: Officially there is no specific training-
test split defined for CASIA-B. In order to have fair comparisons, we have con-
ducted experiments on three settings as suggested and utilized in most SOTA
techniques [1,6]. We name them as Small-sample Training (ST), Medium-sample
Training (MT) and Large-sample Training (LT). In ST (referred to as ST24),
the first 24 subjects (labelled from 001-024) are used for training, and the re-
maining 100 subjects are left for testing. In MT (referred to as MT62), the first
62 subjects are used for training, and the rest 62 subjects are left for testing.
In LT (referred to as LT74), the first 74 subjects are used for training, and the
remaining 50 subjects are left for testing. In the testing stage, sequences NM01-
NM04 constitute the gallery set, while sequences NM05-NM06, BG01-BG02, and
CL01-CL02 form the probe set, facilitating the evaluation of performance.
Comparative analysis: The GaitW has outperformed in the most popular
setting LT74 for CL (included in the main paper) and comparable results for
NM and BG as demonstrated in Tab. 5. For NM condition GaitW has perfor-
mance of 98.8% and current SOTA (MSGR [5]) has perfromance of 99.1% and for
BG condition GaitW has performance of 97.1 and the current SOTA (MSGR [5])
has performance of 97.6%. It is interesting to note that MSGR uses silhouettes
and pose modality jointly to achieve this results. GaitW beats current silhou-
ettes SOTA (HSTGait [3]) in NM condition by 0.4% and beats current silhou-
ettes SOTA (DyGait [4]) in BG condition by 0.9%. In other two setting MT62
and ST24, GaitW outperformed the current SOTA GaitGL [2]. For MT62, across
all conditions (NM, BG and CL) GaitW achieves 5.54% better accuracy than
GaitGL(refer Tab. 4). Similarly for ST24, across all conditions (NM, BG and
CL) GaitW achieves 15.3% better accuracy than GaitGL (refer Tab. 3).
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D Parameters Comparison

We have compared the number of parameters (#Params), FLOPs, gait signature
length (Sig. len.), along with accuracy (Acc.) for our proposed model alongside
state-of-the-art (SOTA) models on CASIA-B dataset is given in the table below.

Method #Params FLOPs Sig. len. Acc.

GaitGL 11.19 58.55 1024 93.5
GaitBase 7.30 9.45 256 89.6
CSTL 9.09 26.2 - 93.4
LangGait - 66.2 512 92.3
HSTGait - 38.4 - 94.3

GaitW 15.2 39.6 128 94.9

Table 2: Parametric capacity comparison across different methods on OU-MVLP dataset.

GaitW is engineered for balanced accuracy and robustness across various datasets.
Existing literature often lacks consistent reporting of parameters and FLOPs,
and the unavailability of the code for some SOTA models restricts comparison.
(refer Tab. 2)

E Testing protocol for GREW-1K

In GREW test dataset, each subject has two labeled samples, while all the probe
samples are unlabeled. The evaluation has to be done online through their server.
Hence, we curated GREW-1K dataset for easier ablation study. We took first 1,000
subjects from GREW and used only their two labeled samples. We used the first
sample as the gallery and the second as the probe, and then performed 1:N
matching to measure performance.

F Qualitative Analysis

In order to justify that our hardness module works consistently, we have chosen
10 subjects randomly. We have used pre-trained GaitW, GaitSet and SwinV2
models and extract the embeddings for 4 easy and 4 hard samples per subject.
A t-sne [2] plot for such 40 easy and hard samples are row-wise, shown in Fig. 3.
The row 1, shows the plot of model GaitW, GaitSet, and SwinV2 on easy samples
designated as per our curriculum. The row 2, shows the plot of the same three
models over hard samples as per our curriculum. It is evident that over easy
samples, all model works well. One can observe that GaitW is able to differentiate
between subjects better, especially when the samples are hard, as compared to
the other models.
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Gallery NM#1-4 Angles from 0◦-108◦

Probe 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ Mean

NM#5-6

ViDP Jour IEEE’13 - - - 59.1 - 50.2 - 57.5 - - - -
CMCC Jour IEEE’13 46.3 - - 52.4 - 48.3 - 56.9 - - - -
CNN-LB Jour IEEE’16 54.8 - - 77.8 - 64.9 - 76.1 - - - -
GaitSet AAAI’19 64.6 83.3 90.4 86.5 80.2 75.5 80.3 86.0 87.1 81.4 59.6 79.5
GaitGL ICCV’21 77.0 87.8 93.9 92.7 83.9 78.7 84.7 91.5 92.5 89.3 74.4 86.0
GaitW 91.4 95.6 97.8 95.2 92.6 93.2 92.7 93.6 95.8 95.7 89.4 93.9

BG#1-2 GaitSet AAAI’19 55.8 70.5 76.9 75.5 69.7 63.4 68.0 75.8 76.2 70.7 52.5 68.6
GaitGL ICCV’21 68.1 81.2 87.7 84.9 76.3 70.5 76.1 84.5 87.0 83.6 65.0 78.6
GaitW 84.6 90.1 92.3 93.2 89.6 87.7 85.8 92.3 94.8 91.5 85.0 89.7

CL#1-2 GaitSet AAAI’19 29.4 43.1 49.5 48.7 42.3 40.3 44.9 47.4 43.0 35.7 25.6 40.9
GaitGL ICCV’21 46.9 58.7 66.6 65.4 58.3 54.1 59.5 62.7 61.3 57.1 40.6 57.4
GaitW 81.6 87.8 88.4 86.2 82.5 84.3 83.2 83.0 87.6 84.3 79.8 84.4

Table 3: Rank-1 accuracy (%) on CASIA-B under all view angles, different conditions,
with ST-24 setting. Refer to the main text for details on testing protocol.

Gallery NM#1-4 Angles from 0◦-108◦

Probe 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ Mean

NM#5-6
AE Jour Neuro.’17 49.3 61.5 64.4 63.6 63.7 58.1 59.9 66.5 64.8 56.9 44.0 59.3
MGAN Jour IEEE’19 54.9 65.9 72.1 74.8 71.1 65.7 70.0 75.6 76.2 68.6 53.8 68.1
GaitSet AAAI’19 86.8 95.2 98.0 94.5 91.5 89.1 91.1 95.0 97.4 93.7 80.2 92.0
GaitGL ICCV’21 93.9 97.6 98.8 97.3 95.2 92.7 95.6 98.1 98.5 96.5 91.2 95.9
GaitW 95.1 98.7 99.4 98.0 97.3 95.1 97.0 98.6 98.3 97.1 93.4 97.1

BG#1-2 AE Jour Neuro.’17 29.8 37.7 39.2 40.5 43.8 37.5 43.0 42.7 36.3 30.6 28.5 37.2
MGAN Jour IEEE’19 48.5 58.5 59.7 58.0 53.7 49.8 54.0 51.3 59.5 55.9 43.1 54.7
GaitSet AAAI’19 79.9 89.9 91.2 86.7 81.6 76.7 81.0 88.2 90.3 88.5 73.0 84.3
GaitGL ICCV’21 88.5 95.1 95.9 94.2 91.5 85.4 89.0 95.4 97.4 94.3 86.3 92.1
GaitW 90.4 96.9 97.3 95.2 94.7 91.3 92.8 96.1 97.6 94.8 87.0 94.0

CL#1-2 AE Jour Neuro.’17 18.7 21.0 25.0 25.1 25.0 26.3 28.7 30.0 23.6 23.4 19.0 24.2
MGAN Jour IEEE’19 23.1 34.5 36.3 33.3 32.9 32.7 34.2 37.6 33.7 26.7 21.0 31.5
GaitSet AAAI’19 52.0 66.0 72.8 69.3 63.1 61.2 63.5 66.5 57.5 60.0 45.9 62.5
GaitGL ICCV’21 70.7 83.2 87.1 84.7 78.2 71.3 78.0 83.7 83.6 77.1 63.1 78.3
GaitW 92.3 95.6 95.7 94.8 93.2 89.1 90.0 92.3 91.7 90.4 85.3 91.8

Table 4: Rank-1 accuracy (%) on CASIA-B under all view angles, different conditions,
with MT-62 setting. Refer to the main text for details on testing protocol.
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GaitW GaitSet SwinV2

Easy
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Hard
Samples

Fig. 3: Row 1, shows t − sne plots of three models: GaitW, GaitSet, and SwinV2, for
40 samples (taken from 10 subjects) declared easy by our hardness scoring module.
Similarly, in Row 2, 40 hard samples are plotted. One can see that over easy samples
all models can discriminate but on hard samples GaitW provides best discriminative
features.
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Gallery NM#1-4 Angles from 0◦-108◦

Probe 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ Mean

NM#5-6

GaitPart CVPR’20 94.1 98.6 99.3 98.5 94.0 92.3 95.9 98.4 99.2 97.8 90.4 96.2
GLN ECCV’20 93.20 99.30 99.50 98.70 96.10 95.60 97.20 98.10 99.30 98.60 90.10 96.88
3DLocal ICCV’21 96.0 99.0 99.5 98.9 97.1 94.2 96.3 99.0 98.8 98.5 95.2 97.5
CSTL ICCV’21 97.8 99.4 99.2 98.4 97.3 95.2 96.7 98.9 99.4 99.3 96.7 98.0
SRN+CB TBBIS’21 94.4 99.3 99.4 98.7 96.8 96.8 97.5 98.5 99.5 98.8 92.3 97.5
GaitGL ArXiv’22 96.6 98.8 99.1 98.1 97.0 96.8 97.9 99.2 99.3 99.3 95.6 98.0
LangGait CVPR’22 95.7 98.1 99.1 98.3 96.4 95.2 97.5 99.0 99.3 98.9 94.9 97.5
MetaGait ECCV’22 t97.3 99.2 99.5 99.1 97.2 95.5 97.6 99.1 99.3 99.1 96.7 98.1
GaitGCI-L CVPR’23 - - - - - - - - - - - 98.4
DANet CVPR’23 96.4 99.1 99.2 98.2 96.6 95.5 97.6 99.4 99.5 99.3 96.9 98.0
MMGaitf. CVPR’23 98.1 98.6 99.0 98.1 98.4 97.8 98.1 99.0 99.2 99.1 97.3 98.4
GaitBase CVPR’23 - - - - - - - - - - - 97.6
GaitRef IJCB’23 97.2 98.7 99.1 98.0 97.3 97.0 98.0 99.4 99.4 98.9 96.4 98.1
STANet ICCV’23 96.4 99.4 99.3 98.9 97.0 95.8 98.2 99.2 99.6 99.2 96.0 98.1
DyGait ICCV’23 97.4 98.9 99.2 98.3 97.7 96.8 98.2 99.3 99.3 99.2 97.6 98.4
HSTGait ICCV’23 97.6 98.0 99.6 98.2 97.4 96.5 97.9 99.3 99.4 98.4 97.0 98.1
MSGR TMM’23 99.3 99.2 99.2 99.1 99.0 99.0 99.5 99.7 99.5 99.5 98.3 99.2
MSAFF IJCB’23 99.1 99.4 99.3 99.1 98.9 98.9 98.9 99.2 99.7 99.6 97.8 99.1
QAGait AAAI’24 - - - - - - - - - - - 97.9
CLASH TIP’24 - - - - - - - - - - - 98.3
GaitW 98.3 98.9 99.8 99.1 98.7 98.0 98.2 99.4 99.3 99.4 97.6 98.8

BG#1-2 GaitPart CVPR’20 89.1 94.8 96.7 95.1 88.3 94.9 89.0 93.5 96.1 93.8 85.8 91.5
GLN ECCV’20 91.10 97.68 97.78 95.20 92.50 91.20 92.40 96.00 97.50 94.95 88.10 94.04
3DLocal ICCV’21 94.7 98.7 98.8 97.5 93.3 91.7 92.8 96.5 98.1 97.3 90.7 95.5
CSTL ICCV’21 95.0 96.8 97.9 96.0 94.0 90.5 92.5 96.8 97.9 99.0 94.3 95.4
SRN+CB TBBIS’21 91.5 97.4 98.4 97.1 92.2 89.7 93.1 96.2 97.5 96.5 88.0 94.3
GaitGL ArXiv’22 93.9 97.3 97.6 96.2 94.7 91.0 94.4 97.2 98.6 97.1 91.6 95.4
LangGait CVPR’22 94.2 96.2 96.8 95.8 94.3 89.5 91.7 96.8 98.0 97.0 90.9 94.6
MetaGait ECCV’22 92.9 96.7 97.1 96.4 94.7 90.4 92.9 97.2 98.5 98.1 92.3 95.2
GaitGCI CVPR’23 - - - - - - - - - - - 96.6
MMGaitf. CVPR’23 97.1 95.9 97.1 95.7 96.1 95.2 95.2 97.1 97.3 96.1 93.5 96.0
DANet CVPR’23 95.0 97.3 98.3 97.4 94.7 91.0 93.9 97.4 98.2 97.6 94.2 95.9
GaitBase CVPR’23 - - - - - - - - - - - 94.0
GaitRef IJCB’23 94.4 96.4 97.3 96.8 96.2 92.2 94.4 97.2 98.7 97.9 93.3 95.9
STANet ICCV’23 94.4 98.2 98.9 97.5 94.1 91.2 93.9 97.4 98.5 97.8 94.0 96.0
DyGait ICCV’23 94.5 96.9 97.4 96.1 95.4 94.0 94.8 97.6 98.5 97.7 94.9 96.2
HSTGait ICCV’23 95.0 96.5 97.3 96.6 95.3 93.3 94.6 96.8 98.6 97.7 92.9 95.9
MSGR IJCB’23 98.3 97.9 98.1 97.4 96.9 95.6 97.3 98.5 99.1 98.3 96.4 97.6
MSAFF TIP’24 97.7 98.5 98.6 98 96.9 95.3 96.2 97.6 98.5 97.7 94.1 97.1
QAGait AAAI’24 - - - - - - - - - - - 94.6
CLASH TIP’24 - - - - - - - - - - - 95.3
GaitW 97.5 98.3 99.0 97.6 96.3 95.0 95.5 97.6 98.9 97.3 94.4 97.1

Table 5: Rank-1 accuracy (%) on CASIA-B under all view angles, nm and bg conditions,
with LT-74 setting. Refer to the main text for details on testing protocol.
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