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SUPPLEMENTARY MATERIAL
Strike the Balance: On-the-Fly

Uncertainty based User Interactions for
Long-Term Video Object Segmentation
In this supplementary document we provide additional quantitative and qual-

itative experiments alongside insights on the current limitation and future di-
rections for improvements.

A Additional Evaluations

A.1 Quantitative Results (Perfect Mask Initialization)

Tab. S1 reports the evaluation of semi-automatic Video Object Segmentation
(sVOS) and lazy interactive Video Object Segmentation (ziVOS) methods on the
LVOS validation set [8], using ground-truth annotations to indicate which object
to segment in the sequence (as in sVOS). We re-evaluated each method, and
compute the robustness metric R@τIoU , expect for DDMemory [8] as the code
is unavailable at the time of writing. Similarly to Table 1 (refer to the paper),
Lazy-XMem† with only pseudo-interaction achieves competitive results to State-
of-the-Art (SOTA) sVOS methods. However, by including user interactions on-
the-fly to aid Lazy-XMem, we manage to improve the results robustness for the
cost of 315 interactions (about 1.02% of the total number of frames in LVOS).

Table S1: Quantitative evaluation of sVOS and ziVOS methods on the LVOS valida-
tion set [8], when initialized with the ground-truth annotations (curated masks as in
sVOS).

Robustness User-Workload

Method J&F R@0.1 R@0.25 R@0.5 N∆I NoI ∆I
sVOS

QDMN [9] (ECCV 2022) 48.2 54.0 50.1 41.5 - - -
XMem [3] (ECCV 2022) 53.7 54.6 51.7 41.3 - - -
DDMemory [8] (ICCV 2023) 60.7 - - - - - -
DEVA [2] (ICCV 2023) 58.2 65.3 62.7 56.8 - - -
Cutie-base [1] (CVPR 2024) 60.3 62.9 62.0 58.3 - - -
Cutie-small [1] (CVPR 2024) 59.0 61.3 59.0 56.5 - - -
Lazy-XMem (ours) 57.2 60.3 58.5 49.6 - - -

ziVOS
Rand-Lazy-XMem (ours) 60.3 66.3 64.3 58.8 5.05 320 18.2
Lazy-XMem (ours) 63.5 70.0 68.3 63.1 4.86 315 18.9
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A.2 Additional Ablations

Table S2 tabulates the results when relying directly on the masked entropy SRc

and its respective derivative ∆SRc
as a condition to request user help. To isolate

the influence each strategy for calling the user’s help, we discard the mask refiner
and the pseudo interaction. We only consider user interactions and rely directly
on the ground-truth annotations to correct the model’s predictions, instead of
the mask refiner. We can see in table Tab. S2, that both strategies enhance
the robustness and the accuracy, especially when updating the memory of the
sVOS baseline (XMem [3]) with the refined masks through the Interaction Driven
Update (IDU). However, by issuing an interaction based on the derivative SRc

,
we manage to significantly reduce the number of user calls from 787 to 327 calls

Table S2: Results for Lazy-XMem when requesting user corrections through SRc or
∆SRc (note that for this table we discard the pseudo-interaction). We initialize each
method with perfect masks. UDU denotes Uncertainty Driven Update

Robustness User-Workload

Configuration J&F R@0.1 R@0.25 R@0.5 N∆I NoI ∆I
XMem [3] (baseline) 53.7 54.6 51.7 41.3 - - -

Call user corrections based on SRc

XMem + UDU 54.7 56.3 54.5 50.0 56.1 3647 1.9
XMem + UDU + IDU 63.5 67.6 66.1 61.7 12.1 787 8.5

Call user corrections based on ∆SRc

XMem + UDU 55.6 58.2 56.4 51.8 7.80 507 12.6
XMem + UDU + IDU 62.9 67.8 66.2 60.9 5.05 327 18.3

B Implementation Details

For our sVOS baseline, we rely on the original weights provided by the authors
of XMem [3], which is trained on the static and DAVIS 2017 training set [10]

Deep Ensemble variant: We experiment with an ensemble approach that
combines three XMem models The first model is trained on the static [5] and
DAVIS 2017 training set [10]. The second model (which we use as a baseline in
Lazy-XMem) is trained similarly to the first model but also includes the synthetic
dataset BL30K [4]. The third model is trained like the first model but with the
addition of the MOSE [7] dataset.

Monte Carlo variant: We rely on spatial pooling [12] applied to the key-
projection of XMem [?], with a dropout ratio of 0.2 for our Monte Carlo Dropout
variant during training, which is maintained during inference. For more details,
we refer the reader to the original paper [3].

Thresholds: We using the training set of the LVOS dataset [8] to identify
the values for τu = 0.5, τp = 0.2 and τm = 0.8.
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Hardware: All experiments are performed on an Nvidia GeForce GTX
1080 Ti.

C Qualitative Results

In this section we provide qualitative results that highlight both success and
failure cases whenever Lazy-XMem issues either pseudo- or user-corrections to
generate a refined mask. Fig. S1 and Fig. S2 displays success and failure cases,
respectively, for generating a refined mask through pseudo-corrections. Fig. S3
and Fig. S4 show results when a refined mask is generated via a simulated user-
correction, as described in ??.

We indicate a ground-truth mask in yellow, the original prediction in turquoise,
the refined mask in orange or purple after a pseudo-and user-correction respec-
tively. We mark the location of a pseudo- or user-corrections through a yellow
star .

For small objects, we provide a cropped version to better visualize the differ-
ent predictions. In these cases, a small image of the original image is shown on
the first column, surrounded by a red border. Note that in Fig. S4, we do not
display refined masks for the third, fourth and fifth rows, as Lazy-XMem missed
for those instances the generation of either a user- or pseudo-corrections.

C.1 Pseudo-Corrections

Through the pixel wise uncertainty estimation, we are able to identify confusing
and confident regions, helpful for the generation of pseudo-corrections, allowing
us to correct the segmentation whenever a distractors is present and anticipate
when the method is likely to fail as shown in Fig. S1. We can observe that our
proposed pseudo-correction generation strategy successfully recovers the original
object of interest in the presence of distractors (e.g., rows two, three, and four).
Additionally, objects that are about to be lost are also recovered (e.g., rows one,
three, and five).

Note that for small objects (refer to Fig. S2), the mask refinement incorrectly
generates masks, although the pseudo-correction location’s lies on the target, as
seen in rows two, three, and five. In the first row, the small gorilla (target) is lost
in favor to the adult gorilla, since the uncertainty is lower the method fails to
issue correct pseudo-corrections or request a user-corrections. Ideally, the method
should detect the transition from the small gorilla to the adult gorilla, while the
pixel level uncertainty for both objects is still high, to indicate confusion. In row
6, we note that the pixel uncertainty for the foot region and the ball (target)
are very similar, consequently the method is unable to find a correct location for
the pseudo-correction generation as both object are as likely considered as the
actual object to track by the sVOS baseline, here the method failed to actually
issue a user-correction.
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Ground-truth Original Mask Entropy Refined Mask

Fig. S1: Qualitative results on the validation set of LVOS [8] when refining the mask
through pseudo-corrections (Success cases).
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Ground-truth Original Mask Entropy Refined Mask

Fig. S2: Qualitative results on the validation set of LVOS [8] when refining the mask
through pseudo-corrections (Failure cases).
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C.2 User-Corrections

In the first and last rows of Fig. S3, we note that the method correctly issues
a user interactions, as only the ear of the sheep and the back of the zebra are
still segmented, preventing the loss of the target. Similarly, in the second and
third rows, the method manages to issue and interaction to the user while losing
the target in favor to a distractors. Note that in the third row, the method
correctly issues a user-correction instead of a pseudo-correction, as otherwise
the pseudo-correction would be generated on the wrong sheep.

In Fig. S4, we observe that the method sometimes unnecessarily calls for user
interaction even when a good portion of the object is correctly predicted (i.e.,
first and second row), and where a pseudo-correction would be more appropriate
(first row).

Additionally, there are instances where a user (or pseudo) correction is missed,
as seen in rows three, four and five. In the fourth row, the tracker confidently
segments a distractor after the disappearance of the object of interest, while indi-
cating the actual object with some uncertainty. Lastly, when the SVOS backbone
loses track of the object of interest, it is unable to recover it, as shown in the
fifth row.

D Kernel Size for Dilating the Mask

In Fig. S5, we present the distribution of the Spearman correlation coefficient [11]
on the DAVIS dataset [10]. Our experiments use a kernel size of 2. However, as
shown in Fig. S5, this choice is rather permissive, as larger kernel sizes (and none
for the first case) yield similar outcomes.

E Limitations and Future Directions

Currently, Lazy-XMem generates only click-based pseudo-corrections, which are
fed to the mask-refiner without including the predicted mask. This approach
limits the impact of the initial mask proposed by the sVOS pipeline.

This bottleneck is inherent to SAM-based models, as they do not consider
masks as prompts in practice. An alternative approach, explored by Delatolas
et al . [6], involves iteratively prompting the mask-refiner with pseudo-prompts
generated from the initial mask until a certain level of alignment is achieved
between the SAM-predicted mask and the original sVOS initial mask. However,
this method assumes that the initial mask (from the sVOS pipeline) is accurate
enough to serve as a reliable base for further prompting the mask-refiner with
uncertainty-based prompts.

An additional direction to follow in future work is to incorporate other types
of prompts, like bounding-boxes or scribble-type, which might add more context
to the prompt. Additionally, while we mostly rely on positive pseudo-clicks,
including negative interactions could further enhance the method’s capabilities.
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Ground-truth Original Mask Entropy Refined Mask

Fig. S3: Qualitative results on the validation set of LVOS [8] when refining the mask
through user-corrections (Success cases).
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Ground-truth Original Mask Entropy Refined Mask

Fig. S4: Qualitative results on the validation set of LVOS [8] when refining the mask
through user-corrections (Failure and miss cases). Here we considered a missed op-
portunity to generate a pseudo- or user-correction whenever the Intersection over
Union (IoU) between the original prediction and the ground-truth annotation is below
0.1.
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(a) Spearman correlation distribution for differ-
ent kernel sizes when computing the masked en-
tropy SRc on the DAVIS 2017 validation set [10].

Fig. S5: Varying the dilation of the masked entropy
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