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1 Appendix006 006

In this document, we provide additional experiments on point cloud objects at007 007

different distance ranges, additional implementation details, and more experi-008 008

mental visualization results.009 009

1.1 Data Statistic On Different Distance010 010
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Fig. 1: The distribution of objects in point clouds over different distance ranges on the
KITTI validation set.

Taking into account the effect of different distance on 3D object detection,011 011

we conduct an investigation into the distance distributions of point cloud objects012 012

on the public benchmark. Based on the GT labels provided by the KITTI [1]013 013

training set, we divided the scene into six distance ranges, each spanning 10 me-014 014

ters, as the distance increases, the point clouds of the object become increasingly015 015
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sparse. Fig. 1 presents the distribution of cars, pedestrians, and cyclists within016 016

these distance ranges.017 017

Since object detection servers for the perception system of autonomous vehi-018 018

cles, the further away(more 40 meters) an object can be detected, the more time019 019

is left for the decision planning system, thus autonomous vehicles will be safer.020 020

As shown in Fig.1, objects at distances of more than 30 meters are dramatically021 021

reduced, and objects often contain fewer points, posing a serious challenge to022 022

detection performance. Most existing 3D detectors are designed for the near dis-023 023

tances and perform poorly even at the far distances. Thus, accurate detection of024 024

sparse remote targets is a reasonably correct object for 3D object detection.025 025

1.2 More Implementation Details026 026

In this work, before sending to networks, the raw points are first encoded into027 027

pillars for heatmap prediction, we define the detection range as [0, 69.12]m for028 028

the X-axis, [-39.68, 39.68]m for the Y-axis, and [-3, 1]m for the Z-axis. For the029 029

Waymo Open Dataset [2], the detection ranges are set to [-75.2m, 75.2m] for030 030

the X and Y axes, and [-2m, 4m] for the Z-axis. The voxel size for each voxel031 031

is set to (0.1m, 0.1m 0.15m). We set the pillar size to (0.16m, 0.16m, 4m).032 032

We randomly sample 128 proposals for training, and 50% of them are positive033 033

samples that have IoU>0.55 with the corresponding ground truth boxes. In the034 034

RoI grid pooling step, the dimension of each grid’s feature fgi is set to 96 with a035 035

grid size G of 6. For each proposal, the point cloud encoder in the detection head036 036

extracts an RoI feature vector of dimension 256. The number of points used to037 037

calculate foreground score , is set to 2,048.038 038

The experiments on Waymo [2], our point generation supervision is the same039 039

as PGRCNN [3], so we approximated the complete shape by utilizing different040 040

instances of the same object class to get complete objects on waymo datasets.041 041

We used an almost identical network architecture in KITTI for the experiments,042 042

except using an increased number of channels of the proposal layers to (128, 256)043 043

and 192 for grid feature dimension.044 044

1.3 Details of Point Generation Losses045 045

In this section, we provide further details on the point generation loss Lgen. Our046 046

implementation of Lgen is consistent with those used in PGRCNN [3].047 047

Lgen = Lseg + Lshape , (1)048 048

Lseg is a point-level segmentation loss that generates foreground scores for points049 049

to determine if the points fall within a ground-truth bounding box. This process050 050

assigns them to segmentation labels. We apply Focal Loss on the generated051 051

points:052 052

Lseg = − 1

Np

∑
j

(1− sj)
γ
log sj , (2)053 053

where sj , j = 1, 2, · · · Np are the foreground score of the sampled points.054 054
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Table 1: Performance comparison at different distance ranges on the moderate level
car class of KITTI val split set. The results are evaluated with the moderate AP
calculated by 40 recall positions. The best performance value is in bold.

Class Car Pedestrian Cyclist
Distance 0-20m 20-40m 40-inf 0-20m 20-40m 40-inf 0-20m 20-40m 40-inf

VoxelRCNN 94.36 82.59 42.78 69.66 37.25 1.98 90.42 60.48 32.69
SIENet 95.36 84.56 44.21 71.56 39.58 2.69 93.42 62.36 35.89

PGRCNN 96.36 85.48 45.23 74.56 40.26 2.58 94.12 64.56 37.55
DSaPG(Ours) 96.54 86.45 46.49 75.35 44.23 2.84 94.23 66.85 38.22
Improvement +0.18 +0.93 +1.26 +0.79 +3.97 +0.26 +0.11 +2.29 +0.67

Lshape supervises of the shape of the generation point cloud. We employed055 055

the approximation method proposed in [4] to estimate the complete shape of the056 056

object by utilizing other instances of objects within the provided dataset. We057 057

employ Chamfer Distance on foreground proposals as follows:058 058

Lshape = 1
Nfp

∑
r

(
1

|Pr|
∑

x∈Pr
miny∈P∗

r
∥x− y∥22+

1
|P∗

r |
∑

y∈P∗
r
minx∈Pr

∥y − x∥22
)
,

(3)059 059

Nfpis the number of foreground proposals, and Pr and P∗
r are the generated060 060

and the target point cloud.061 061

1.4 Experimental Analysis At Different Distances062 062

We report the 3D detection performance of the proposed DsaPG compared to063 063

VoxelRCNN [5], SIENet [6] and PGRCNN [3] under the distinct distance ranges064 064

in Table 1. We can observe 3D detectors can achieve excellent detection perfor-065 065

mance under the distance of less than 40 meters, however, there is a significant066 066

decrease for detection performance at the distance exceeding 30 meters. The rea-067 067

son may be the objects closer to the LiDAR sensor (less than 30 meters) contain068 068

rich information under the dense point cloud, while the distant sparse points069 069

suffer from incomplete information.070 070

Obviously, compared with VoxelRCNN [5], the point cloud completion method071 071

can significantly improve the detection accuracy at a distance. Compared with072 072

VoxelRCNN [5], DSaPG improve +3.71%, +0.86% and +5.53% Ap for car,073 073

pedestrian and cyclist over 40m distance. This is due to the generated virtual074 074

points enhancing the contour of faraway objects, thereby facilitating their detec-075 075

tion. Meanwhile, compared with the other two point cloud completion methods,076 076

DSaPG improves +0.93%, +3.97% and +2.29% Ap within the specific distance-077 077

range of 30-40 meters from LiDAR sensor. This is due to the geometric RPN078 078

module, the density-aware of the original point cloud and the deformation learn-079 079

ing of the generated point.080 080
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Table 2: Performance breakdown over different occlusion levels.

Class Car Pedestrian Cyclist
Occlusion Level-0 Level-1 Level-2 Level-0 Level-1 Level-2 Level-0 Level-1 Level-2
VoxelRCNN 92.38 79.24 56.73 67.75 28.21 7.88 91.19 25.53 2.03
PGRCNN 92.73 80.07 57.25 68.44 34.23 8.94 93.84 30.06 2.53
DSaPG(Ours) 93.08 81.21 57.92 72.07 35.78 9.09 94.19 31.24 2.73

1.5 Experimental Analysis under different levels of occlusion081 081

We compare DsaPG with other detectors on different occlusion levels. The re-082 082

sults shown in Table 2. For car detection, our DSaPG achieves higher accuracy083 083

for highly occluded objects. For the two difficult detection categories of cyclist084 084

and pedestrian, DSaPG still brings consistent and significant improvements on085 085

different levels even in extremely difficult cases.086 086

1.6 Experimental Analysis of hyperparameter values087 087

Figure 2 displays the ablation study of hyperparameters λ and ω. The observa-088 088

tion indicates that both λ and ω reach their peak performance at 1.

Fig. 2: λ and ω ablation studies
089 089

1.7 More Visualization Results090 090

In order to specifically observe the detection performance of our proposed DSaPG,091 091

we visualize the point generation experimental results of 3D object detection on092 092

the public benchmarks comparing the result of PGRCNN [3]. We also visualize093 093

the effect of the addition of different modules(Geometry-guided RPN, Density-094 094

aware point generation, Deformation learning) on the generation of point clouds.095 095

Analysis on Point Generation Results Here, we compare the qualitative096 096

results of the proposed method on KITTI val data with a previous point cloud097 097

completion method, PGRCNN [3]. Fig.3 illustrates some of the point generation098 098
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Fig. 3: Illustration of the point generation and 3D detection results on the KITTI
validation set of PGRCNN and DSaPG(Ours). The green, cyan, and blue boxes are
prediction boxes for cars, cyclists, and pedestrians, respectively.

and detection results of DSaPG and PG-RCNN. The first line show the each099 099

point cloud scene. Other two rows of Fig.3 display the outputs in a bird’s-eye-100 100

view. We marked the inadequacies in PGRCNN [3] with yellow dotted boxes,101 101

It can be clearly seen that in some scenes, PGRCNN often results in wrong102 102

object recognition and point cloud generation due to the lack of prior guidance103 103

and reasonable geometric perception. In contrast, DSaPG can recover accurate104 104

object shapes at reasonable locations. In the third column of the second row,105 105

PGRCNN [3] causes false detection and unreasonable point cloud generation. In106 106

contrast, our method achieves reasonable recognition, thanks to the fact that107 107

our geometry-guided RPN module can generate accurate proposals. In general,108 108

DSaPG(ours) can faithfully recover the shape of the object in a reasonable po-109 109

sition and improve the detection performance.110 110

Effect of geometry-guided RPN on point cloud completion Fig.4 vi-111 111

sualizes the effect of different RPN on point cloud completion in some cases. We112 112

respectively use the RPN module of VoxelRCNN [5] and our proposed geometric113 113

guided RPN module for training. The first row shows that the original RPN114 114

module tends to produce a large orientation deviation from the GT box, despite115 115

the presence of foreground supervision. However, the direction of the generated116 116

points is still biased towards the direction corresponding to the proposal, re-117 117

sulting in wrong completion. The second row shows the point cloud completion118 118

results of geometry-guided RPN. Although it is not guaranteed that all initial119 119

boxes can have reasonable orientation alignment, due to our orientation super-120 120

vision and heat map supervision, the orientation of initial boxes can be roughly121 121

guaranteed to ensure the rationality of generated points.122 122

Effect of deformation learning on point cloud completion Figure5123 123

visualizes the impact of deformation learning on point cloud completion, which124 124

generates an offset for each generated point through the foreground score of125 125

the generated point, which helps to make the location of the generated point126 126

reasonable as well as more accurate shape recovery. The red arrow in Figure5127 127

implies that the offset direction of the generating point is the main assumption.128 128



6 ACCV 2024 Submission #531

R
P

N
 o

f 
 V

o
xe

lR
C

N
N

G
e

o
m

et
ry

-g
u

id
e

d
 R

P
N

Fig. 4: Illustration of the impact of the RPN module on point cloud completion, we
compare the geometry-guided RPN and VoxelRCNN-based RPN, where green, blue,
and red represent GT boxes, initial proposal, and generated points, respectively.

Fig. 5: Illustration of the influence of Deformation learning on point cloud generation.
The point cloud in the figure is the normal generation result, the red arrow implies
that the moving direction of the point is subjective conjecture, and the green, blue and
red represent the GT box, the initial proposal and the generated point respectively.

It can be seen that due to the offset, the generating point can cross the proposal129 129

and fall in a reasonable position in the GT box.130 130

Effect of Density-aware Deformable Point Generation on point131 131

cloud completion Fig. 6 and Fig. 7 visualize the output results of the density-132 132

aware deformable point generation module. Fig.6 shows the results of point cloud133 133

generation from a bird’s eye view. The first shows the original point cloud, and134 134

the second shows the point cloud completed by DsaPG. It can be seen that our135 135

method can reasonably recover the missing shape of the object regardless of136 136

whether the object contains more points or fewer points, and the density distri-137 137

bution of concerns generates more uniform and intentional points to facilitate138 138

the acquisition of more meaningful spatial information. Fig. 7 intuitively shows139 139

the point cloud completion results of the rider and bicycle. The first is the orig-140 140

inal point cloud, and the second is the view of the completed point cloud. For141 141

small target objects, although it is sometimes difficult to form a reasonable shape142 142
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Fig. 6: Examples of completed point clouds in a bird’s-eye-view, where green and red
represent GT boxes and generated points, respectively.
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Fig. 7: Examples of completed point clouds for a car, pedestrian, and cyclist, where
green and red represent GT boxes and generated points, respectively

due to too few points, the generated points still retain the exact position. All143 143

the results prove the effectiveness of our point cloud completion method, which144 144

not only focuses on the location of the generated points, but also ensures the145 145

effectiveness of the generated points for object shape recovery.146 146
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