

1 Appendix ⁰⁰⁶

 In this document, we provide additional experiments on point cloud objects at ⁰⁰⁷ different distance ranges, additional implementation details, and more experi- ⁰⁰⁸ mental visualization results. ⁰⁰⁹

1.1 Data Statistic On Different Distance ⁰¹⁰

Fig. 1: The distribution of objects in point clouds over different distance ranges on the KITTI validation set.

 Taking into account the effect of different distance on 3D object detection, ⁰¹¹ we conduct an investigation into the distance distributions of point cloud objects ⁰¹² on the public benchmark. Based on the GT labels provided by the KITTI [\[1\]](#page-6-0) ⁰¹³ training set, we divided the scene into six distance ranges, each spanning 10 me- ⁰¹⁴ ters, as the distance increases, the point clouds of the object become increasingly ⁰¹⁵

 sparse. Fig. [1](#page-0-0) presents the distribution of cars, pedestrians, and cyclists within ⁰¹⁶ these distance ranges. ⁰¹⁷

 Since object detection servers for the perception system of autonomous vehi- ⁰¹⁸ cles, the further away(more 40 meters) an object can be detected, the more time ⁰¹⁹ is left for the decision planning system, thus autonomous vehicles will be safer. ⁰²⁰ As shown in Fig[.1,](#page-0-0) objects at distances of more than 30 meters are dramatically ⁰²¹ reduced, and objects often contain fewer points, posing a serious challenge to ⁰²² detection performance. Most existing 3D detectors are designed for the near dis- ⁰²³ tances and perform poorly even at the far distances. Thus, accurate detection of ⁰²⁴ sparse remote targets is a reasonably correct object for 3D object detection. ⁰²⁵

1.2 More Implementation Details ⁰²⁶

 In this work, before sending to networks, the raw points are first encoded into ⁰²⁷ 028 pillars for heatmap prediction, we define the detection range as $[0, 69.12]m$ for 028 029 the X-axis, $[-39.68, 39.68]$ m for the Y-axis, and $[-3, 1]$ m for the Z-axis. For the 029 030 Waymo Open Dataset [\[2\]](#page-6-1), the detection ranges are set to $[-75.2m, 75.2m]$ for 030 031 the X and Y axes, and $[-2m, 4m]$ for the Z-axis. The voxel size for each voxel 031 032 is set to $(0.1m, 0.1m, 0.15m)$. We set the pillar size to $(0.16m, 0.16m, 4m)$. 032 We randomly sample 128 proposals for training, and 50% of them are positive ⁰³³ samples that have IoU>0.55 with the corresponding ground truth boxes. In the ⁰³⁴ 035 RoI grid pooling step, the dimension of each grid's feature f_{qi} is set to 96 with a 035 grid size G of 6. For each proposal, the point cloud encoder in the detection head ⁰³⁶ extracts an RoI feature vector of dimension 256. The number of points used to ⁰³⁷ calculate foreground score , is set to 2,048. ⁰³⁸

 The experiments on Waymo [\[2\]](#page-6-1), our point generation supervision is the same ⁰³⁹ as PGRCNN [\[3\]](#page-7-0), so we approximated the complete shape by utilizing different ⁰⁴⁰ instances of the same object class to get complete objects on waymo datasets. ⁰⁴¹ We used an almost identical network architecture in KITTI for the experiments, ⁰⁴² 043 except using an increased number of channels of the proposal layers to $(128, 256)$ 043 and 192 for grid feature dimension. ⁰⁴⁴

1.3 Details of Point Generation Losses ⁰⁴⁵

046 In this section, we provide further details on the point generation loss \mathcal{L}_{gen} . Our 046 047 implementation of \mathcal{L}_{gen} is consistent with those used in PGRCNN [\[3\]](#page-7-0). 047

$$
\mathcal{L}_{\text{gen}} = \mathcal{L}_{\text{seg}} + \mathcal{L}_{\text{shape}} \,, \tag{1} \tag{1}
$$

 \mathcal{L}_{seg} is a point-level segmentation loss that generates foreground scores for points 049 to determine if the points fall within a ground-truth bounding box. This process ⁰⁵⁰ assigns them to segmentation labels. We apply Focal Loss on the generated ⁰⁵¹ points: ⁰⁵²

$$
\mathcal{L}_{\text{seg}} = -\frac{1}{N_p} \sum_{j} \left(1 - s_j\right)^{\gamma} \log s_j,\tag{2}
$$

054 where s_j , $j = 1, 2, \cdots N_p$ are the foreground score of the sampled points. 054

Class	Car			Pedestrian			Cyclist		
Distance								$0-20m$ 20-40m 40-inf $0-20m$ 20-40m 40-inf $0-20m$ 20-40m 40-inf	
VoxelRCNN								94.36 82.59 42.78 69.66 37.25 1.98 90.42 60.48 32.69	
SIENet								95.36 84.56 44.21 71.56 39.58 2.69 93.42 62.36 35.89	
PGRCNN								96.36 85.48 45.23 74.56 40.26 2.58 94.12 64.56 37.55	
$DSaPG(Ours)$ 96.54 86.45 46.49 75.35 44.23 2.84 94.23 66.85 38.22									
<i>Improvement</i> $ +0.18 +0.93 +1.26 +0.79 +3.97 +0.26 +0.11 +2.29 +0.67$									

Table 1: Performance comparison at different distance ranges on the moderate level car class of KITTI val split set. The results are evaluated with the moderate AP calculated by 40 recall positions. The best performance value is in bold.

 $\mathcal{L}_{\text{shape}}$ supervises of the shape of the generation point cloud. We employed 055 the approximation method proposed in [\[4\]](#page-7-1) to estimate the complete shape of the ⁰⁵⁶ object by utilizing other instances of objects within the provided dataset. We ⁰⁵⁷ employ Chamfer Distance on foreground proposals as follows: ⁰⁵⁸

$$
\mathcal{L}_{\text{shape}} = \frac{1}{N_{fp}} \sum_{r} \left(\frac{1}{|\mathbf{P}_r|} \sum_{\mathbf{x} \in \mathbf{P}_r} \min_{\mathbf{y} \in \mathbf{P}_r^*} \|\mathbf{x} - \mathbf{y}\|_2^2 + \frac{1}{|\mathbf{P}_r^*|} \sum_{\mathbf{y} \in \mathbf{P}_r^*} \min_{\mathbf{x} \in \mathbf{P}_r} \|\mathbf{y} - \mathbf{x}\|_2^2 \right), \tag{3}
$$

060 N_{fp} is the number of foreground proposals, and P_r and P_r^* are the generated 060 ⁰⁶¹ and the target point cloud. ⁰⁶¹

⁰⁶² 1.4 Experimental Analysis At Different Distances ⁰⁶²

 We report the 3D detection performance of the proposed DsaPG compared to ⁰⁶³ VoxelRCNN [\[5\]](#page-7-2), SIENet [\[6\]](#page-7-3) and PGRCNN [\[3\]](#page-7-0) under the distinct distance ranges ⁰⁶⁴ in Table [1.](#page-2-0) We can observe 3D detectors can achieve excellent detection perfor- ⁰⁶⁵ mance under the distance of less than 40 meters, however, there is a significant ⁰⁶⁶ decrease for detection performance at the distance exceeding 30 meters. The rea- ⁰⁶⁷ son may be the objects closer to the LiDAR sensor (less than 30 meters) contain ⁰⁶⁸ rich information under the dense point cloud, while the distant sparse points ⁰⁶⁹ 070 suffer from incomplete information. 070 070

 Obviously, compared with VoxelRCNN [\[5\]](#page-7-2), the point cloud completion method ⁰⁷¹ can significantly improve the detection accuracy at a distance. Compared with ⁰⁷² 073 VoxelRCNN [\[5\]](#page-7-2), DSaPG improve $+3.71\%$, $+0.86\%$ and $+5.53\%$ Ap for car, 073 pedestrian and cyclist over 40m distance. This is due to the generated virtual ⁰⁷⁴ points enhancing the contour of faraway objects, thereby facilitating their detec- ⁰⁷⁵ tion. Meanwhile, compared with the other two point cloud completion methods, ⁰⁷⁶ 077 DSaPG improves $+0.93\%$, $+3.97\%$ and $+2.29\%$ Ap within the specific distance- range of 30-40 meters from LiDAR sensor. This is due to the geometric RPN ⁰⁷⁸ module, the density-aware of the original point cloud and the deformation learn- ⁰⁷⁹ 080 ing of the generated point. 080

Table 2: Performance breakdown over different occlusion levels.

⁰⁸¹ 1.5 Experimental Analysis under different levels of occlusion ⁰⁸¹

 We compare DsaPG with other detectors on different occlusion levels. The re- ⁰⁸² sults shown in Table [2.](#page-3-0) For car detection, our DSaPG achieves higher accuracy ⁰⁸³ for highly occluded objects. For the two difficult detection categories of cyclist ⁰⁸⁴ and pedestrian, DSaPG still brings consistent and significant improvements on ⁰⁸⁵ different levels even in extremely difficult cases. ⁰⁸⁶

⁰⁸⁷ 1.6 Experimental Analysis of hyperparameter values ⁰⁸⁷

088 Figure [2](#page-3-1) displays the ablation study of hyperparameters λ and ω . The observa- 088 tion indicates that both λ and ω reach their peak performance at 1.

090 1.7 More Visualization Results 000

 In order to specifically observe the detection performance of our proposed DSaPG, ⁰⁹¹ we visualize the point generation experimental results of 3D object detection on ⁰⁹² the public benchmarks comparing the result of PGRCNN [\[3\]](#page-7-0). We also visualize ⁰⁹³ the effect of the addition of different modules(Geometry-guided RPN, Density- ⁰⁹⁴ aware point generation, Deformation learning) on the generation of point clouds. ⁰⁹⁵

⁰⁹⁶ Analysis on Point Generation Results Here, we compare the qualitative ⁰⁹⁶ ⁰⁹⁷ results of the proposed method on KITTI val data with a previous point cloud ⁰⁹⁷ ⁰⁹⁸ completion method, PGRCNN [\[3\]](#page-7-0). Fig[.3](#page-4-0) illustrates some of the point generation ⁰⁹⁸

Fig. 3: Illustration of the point generation and 3D detection results on the KITTI validation set of PGRCNN and DSaPG(Ours). The green, cyan, and blue boxes are prediction boxes for cars, cyclists, and pedestrians, respectively.

 and detection results of DSaPG and PG-RCNN. The first line show the each ⁰⁹⁹ point cloud scene. Other two rows of Fig[.3](#page-4-0) display the outputs in a bird's-eye- ¹⁰⁰ view. We marked the inadequacies in PGRCNN [\[3\]](#page-7-0) with yellow dotted boxes, ¹⁰¹ It can be clearly seen that in some scenes, PGRCNN often results in wrong ¹⁰² object recognition and point cloud generation due to the lack of prior guidance ¹⁰³ and reasonable geometric perception. In contrast, DSaPG can recover accurate ¹⁰⁴ object shapes at reasonable locations. In the third column of the second row, ¹⁰⁵ PGRCNN [\[3\]](#page-7-0) causes false detection and unreasonable point cloud generation. In ¹⁰⁶ contrast, our method achieves reasonable recognition, thanks to the fact that ¹⁰⁷ our geometry-guided RPN module can generate accurate proposals. In general, ¹⁰⁸ DSaPG(ours) can faithfully recover the shape of the object in a reasonable po- ¹⁰⁹ sition and improve the detection performance. ¹¹⁰

 Effect of geometry-guided RPN on point cloud completion Fig[.4](#page-5-0) vi- ¹¹¹ sualizes the effect of different RPN on point cloud completion in some cases. We ¹¹² respectively use the RPN module of VoxelRCNN [\[5\]](#page-7-2) and our proposed geometric ¹¹³ guided RPN module for training. The first row shows that the original RPN ¹¹⁴ module tends to produce a large orientation deviation from the GT box, despite ¹¹⁵ the presence of foreground supervision. However, the direction of the generated ¹¹⁶ points is still biased towards the direction corresponding to the proposal, re- ¹¹⁷ sulting in wrong completion. The second row shows the point cloud completion ¹¹⁸ results of geometry-guided RPN. Although it is not guaranteed that all initial ¹¹⁹ boxes can have reasonable orientation alignment, due to our orientation super- ¹²⁰ vision and heat map supervision, the orientation of initial boxes can be roughly ¹²¹ guaranteed to ensure the rationality of generated points. ¹²²

 Effect of deformation learning on point cloud completion Figur[e5](#page-5-1) ¹²³ visualizes the impact of deformation learning on point cloud completion, which ¹²⁴ generates an offset for each generated point through the foreground score of ¹²⁵ the generated point, which helps to make the location of the generated point ¹²⁶ reasonable as well as more accurate shape recovery. The red arrow in Figur[e5](#page-5-1) ¹²⁷ implies that the offset direction of the generating point is the main assumption. ¹²⁸

Fig. 4: Illustration of the impact of the RPN module on point cloud completion, we compare the geometry-guided RPN and VoxelRCNN-based RPN, where green, blue, and red represent GT boxes, initial proposal, and generated points, respectively.

Fig. 5: Illustration of the influence of Deformation learning on point cloud generation. The point cloud in the figure is the normal generation result, the red arrow implies that the moving direction of the point is subjective conjecture, and the green, blue and red represent the GT box, the initial proposal and the generated point respectively.

¹²⁹ It can be seen that due to the offset, the generating point can cross the proposal ¹²⁹ ¹³⁰ and fall in a reasonable position in the GT box. ¹³⁰

 Effect of Density-aware Deformable Point Generation on point ¹³¹ cloud completion Fig. [6](#page-6-2) and Fig. [7](#page-6-3) visualize the output results of the density- ¹³² aware deformable point generation module. Fig[.6](#page-6-2) shows the results of point cloud ¹³³ generation from a bird's eye view. The first shows the original point cloud, and ¹³⁴ the second shows the point cloud completed by DsaPG. It can be seen that our ¹³⁵ method can reasonably recover the missing shape of the object regardless of ¹³⁶ whether the object contains more points or fewer points, and the density distri- ¹³⁷ bution of concerns generates more uniform and intentional points to facilitate ¹³⁸ the acquisition of more meaningful spatial information. Fig. [7](#page-6-3) intuitively shows ¹³⁹ the point cloud completion results of the rider and bicycle. The first is the orig- ¹⁴⁰ inal point cloud, and the second is the view of the completed point cloud. For ¹⁴¹ small target objects, although it is sometimes difficult to form a reasonable shape ¹⁴²

Fig. 6: Examples of completed point clouds in a bird's-eye-view, where green and red

Fig. 7: Examples of completed point clouds for a car, pedestrian, and cyclist, where green and red represent GT boxes and generated points, respectively

 due to too few points, the generated points still retain the exact position. All ¹⁴³ the results prove the effectiveness of our point cloud completion method, which ¹⁴⁴ not only focuses on the location of the generated points, but also ensures the ¹⁴⁵ effectiveness of the generated points for object shape recovery. ¹⁴⁶

147 References 147

- 3. I. Koo, I. Lee, S.-H. Kim, H.-S. Kim, W.-j. Jeon, and C. Kim, "Pg-rcnn: Semantic 155 156 surface point generation for 3d object detection," in Proceedings of the IEEE/CVF 156 International Conference on Computer Vision, pp. 18142–18151, 2023. [2,](#page-1-0) [3,](#page-2-1) [4,](#page-3-2) [5](#page-4-1) 157
- 4. Q. Xu, Y. Zhong, and U. Neumann, "Behind the curtain: Learning occluded shapes 158 for 3d object detection," in Proceedings of the AAAI Conference on Artificial Intel- 159 *ligence*, vol. [3](#page-2-1)6, pp. 2893–2901, 2022. 3 160
- 5. J. Deng, S. Shi, P. Li, W. Zhou, Y. Zhang, and H. Li, "Voxel r-cnn: Towards high per- 161 formance voxel-based 3d object detection," in Proceedings of the AAAI conference 162 163 on artificial intelligence, vol. 35, pp. 1201–1209, 2021. [3,](#page-2-1) [5](#page-4-1) 163
- 6. Z. Li, Y. Yao, Z. Quan, J. Xie, and W. Yang, "Spatial information enhancement 164 network for 3d object detection from point cloud," Pattern Recognition, vol. 128, 165 p. 108684, 2022. [3](#page-2-1) 166