Supplementary Material

Huiying Xi^{1*}, Xia Yuan^{1**}, Shiwei Wu¹, Runze Geng¹, Kaiyang Wang¹, Yongshun Liang¹, and Chunxia Zhao¹

¹ Nanjing University of Science and Technology, Nanjing, China yuanxia@njust.edu.cn

1 Fractional-order total variation

In this section, we consider $\mathcal{C}_0^{\alpha}(\Omega, \mathbb{R}^d)$, where $\alpha > 0$, as the space comprising functions that are continuously differentiable and α -compactly supported. Then the α -order total variation is defined as

$$TV^{\alpha}(u) = \sup_{\varPhi} \int_{\varOmega} (u \operatorname{div}^{\alpha} \varPhi) \, dx, \tag{1}$$

where $\Phi \in \mathcal{C}_0^{\alpha}(\Omega, \mathbb{R}^d)$, satisfying the constraint $|\phi(x)| \leq 1$ for all $x \in \Omega$.

In the case of $\Phi \in \mathcal{C}_0^{\alpha}(\Omega, \mathbb{R}^2)$, the α -order divergence is defined as

$$\operatorname{div}^{\alpha} \Phi = \frac{\partial^{\alpha} \phi_1}{\partial x_1^{\alpha}} + \frac{\partial^{\alpha} \phi_2}{\partial x_2^{\alpha}},\tag{2}$$

where $\frac{\partial^{\alpha} \phi_i}{\partial x_i^{\alpha}}$ represents the fractional α -order derivative of ϕ_i along the x_i direction, with i = 1, 2.

We note that the expression $TV^{\alpha}(u)$ remains invariant across different definitions of $\frac{\partial^{\alpha} \phi_i}{\partial x_i^{\alpha}}$, due to the adherence of Φ to equivalence conditions. Nonetheless, the fractional derivative $\frac{\partial^{\alpha} u}{\partial x_i^{\alpha}}$ varies with different definitions of fractional derivatives. We specifically focus on three classical definitions: Riemann-Liouville (R-L), Grünwald-Letnikov (G-L), and Caputo fractional-order derivatives.

Based on the semi-norm presented in Equation 1, we introduce the space of functions characterized by bounded α -order total variation, designated as

$$BV^{\alpha}(\Omega) := \left\{ u \in L^{1}(\Omega) : TV^{\alpha}(u) < \infty \right\}.$$
(3)

Analogous to the space of functions with bounded variations, $BV^{\alpha}(\Omega)$ can be demonstrated to be a Banach space. Furthermore, $TV^{\alpha}(u)$ in $BV^{\alpha}(\Omega)$ space exhibits the property of lower semi-continuity.

* Co-first author

^{**} Co-first author, Corresponding author