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In this Supplementary Materials, we provide more details and experimen-
tal results for further understanding of the proposed Space-Channel Hybrid
(SCH) framework with window-based channel attention and wavelet transform
for learned image compression (LIC).

A Traditional Image Compression Codecs Settings

A.1 VTM-23.1

VVC Test Model (VTM) from Versatile Video Coding (VVC) [17] standard is
available at https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM. We use
the benchmark script from CompressAI [3] platform to evaluate VTM-23.1, and
the command is listed as follows:
python -m compressai.utils.bench vtm [path of dataset]
-c [path of VTM]/cfg/encoder_intra_vtm.cfg
-b [path of VTM]/bin
-q [quantization step size].
We set the quantization step size as {24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44}.

A.2 BPG

Better Portable Graphics (BPG) [4] is available at https://bellard.org/bpg/,
and the command using CompressAI is as follows:
python -m compressai.utils.bench bpg [path of dataset]
–encoder-path [path of bpg]/bpgenc
–decoder-path [path of bpg]/bpgdec
-q [quantization step size].
We set the quantization step size as {26, 28, 30, 32, 34, 36, 38, 40, 42, 44}.

A.3 JPEG2000

JPEG2000 [14] is integrated into CompressAI as follows:
python -m compressai.utils.bench jpeg2000 [path of dataset]
-q [quantization step size].
We set the quantization step size as {10, 15, 20, 25, 30, 35, 40, 45}.
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Fig. 1: The overall architecture of our model.
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Fig. 2: (a) Residual Block (RB), (b) Residual Block with Stride (RBS), and (c) Resid-
ual Block Upsampling (RBU) from [5].

B Detailed Network Architecture

The architecture of our model is illustrated in Fig. 1. The numbers of heads
of SCH blocks in ga and gs are {8,16,32,32,16,8}. Space attention modules and
channel attention modules share the same number of heads in the same level
of blocks. Following [10], the number of channel slices in the channel-wise auto-
regressive model is set as 5.

The structures of Residual Block (RB), Residual Block with Stride (RBS)
and Residual Block Up-sampling (RBU) are shown in Fig. 2. Generalized Divi-
sive Normalization (GDN) [2] is used in LIC instead of batch normalization [8]
because of its spatial-adaptive learning, which is formulated as:

yi(m,n) = xi(m,n) · 1√
βi +

∑
j γij(xj(m,n))2

, (1)

where i is the output channel index, j is the input channel index, γ acts as
the role of the 1× 1 convolutional kernel, and β is the bias. This normalization
is invertible, and we use GDN in the analysis transform ga and IGDN in the
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synthesis transform gs. IGDN is formulated as follows:

yinvi (m,n) = xi(m,n) ·
√

βi +
∑
j

γij(xj(m,n))2. (2)

In RBU, "subpel 3 × 3 conv" is 3 × 3 sub-pixel convolution for up-sampling,
combining a 3× 3 convolutional layer and a Pixel Shuffle module from PyTorch
[13].

Note that we do not replace RBS and RBU between successive SCH blocks
with the proposed wavelet transform module for down-sampling and up-sampling.
This is because the channel size of intermediate features of ga and gs is a constant
N with a large value of 256. For the H ×W × N input, the wavelet transform
module transforms it into the shape of H

2 × W
2 × 4N . Therefore, we need to per-

form the transformation on the channel dimension to maintain the consistency
of our LIC framework. One option is to use the residual block with input channel
4N and output channel N to reduce the channel size after wavelet transform,
but it results in a large quantity of parameters in this residual block. The other
option is to use the residual block with input channel N and output channel N

4
to reduce the channel size before wavelet transform, but it causes information
loss in the network. As a result, we only use the wavelet transform module to
process raw input images.

C Detailed Rate-Distortion Results

We provide detailed Rate-Distortion results in Figs. 3 to 6, corresponding to
Rate-Distortion results in Section 4.2 of the main paper.

Kodak [9] dataset is available at http://r0k.us/graphics/kodak.

Tecnick [1] dataset is available at https://sourceforge.net/projects/testima
ges/files/OLD/OLD_SAMPLING/testimages.zip.

CLIC Professional Validation [15] dataset is available at https://data.vision.
ee.ethz.ch/cvl/clic/professional_valid_2020.zip.

CLIC 2021 Test [16] dataset is available at https://storage.googleapis.com/c
lic2021_public/professional_test_2021.zip.

http://r0k.us/graphics/kodak
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Fig. 3: Rate-Distortion results on Kodak [9] (24 images, 768×512 or 512×768).
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Fig. 4: Rate-Distortion results on Tecnick [1] (100 images, 1200×1200).
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Fig. 5: Rate-Distortion results on CLIC Professional Validation [15] (41 images, from
512×384 to 2048×1370).
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Fig. 6: Rate-Distortion results on CLIC 2021 Test [16] (60 images, from 751×500 to
2048×1415).
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D Discussions on the Parameters of Attention Module

If we ignore parameters in bias and normalization, for the L×C input, a space
attention module has 12C2 parameters. The self-attention module contains three
input projection layers and one output projection layer, their matrices WQ, WK ,
WV , and WO have 4×(C×C) = 4C2 parameters in total. Multilayer Perceptron
(MLP) layer contains two linear projection layers, having C×4C+4C×C = 8C2

parameters given the MLP ratio of 4. The sum of parameters in a space attention
module is 4C2 + 8C2 = 12C2. After the space-channel dimension transposition,
our window-based channel attention module contains 12(hw)2 parameters if the
window size is h× w.

If we include parameters in bias and normalization, the space attention mod-
ule has 12C2 + 13C parameters. Biases of four linear projection layers in the
self-attention module have 4C parameters. Biases of two linear projection layers
in the MLP layer have 4C + C = 5C parameters. Layer normalization modules
have two learnable parameters, γ and β, whose lengths are both C. Consequently,
layer normalization modules in the self-attention module and MLP layer have
2C + 2C = 4C parameters. The sum of parameters in bias and normalization
is 4C + 5C + 4C = 13C. For our window-based channel attention module, it
contains 12(hw)2 +13hw parameters. Since hw is generally smaller than C, our
channel attention module is more parameter-efficient in both cases.

E More Ablation Studies

We provide ablation studies on the Kodak [9] dataset in Fig. 7. Our SCH frame-
work benefits from the global information learning in our window-based channel
attention module, so the performance gain on this lower-resolution dataset is
reduced. These results still validate the effectiveness of the proposed channel
attention module and wavelet transform module.

F More Visualization Examples

F.1 Effective Receptive Fields

We provide more examples in Figs. 8 and 9 to visualize Effective Receptive Fields
(ERF) [12] of computing modules from our SCH, TCM [10] and DaViT [6]. ERF
can be obtained as gradients of one point in the feature map to all pixels at the
input, and we select the output feature from modules of the last block in ga
to generate it. Results are normalized and clipped by a threshold of 0.3 for
appropriate visualization.

We compare our window-based channel attention with residual block [7],
window attention [11], shifted-window attention [11] and channel group attention
[6]. For Figs. 8a to 8c, 8e and 8g, and Figs. 9a to 9c, 9e and 9g, these modules
work with wavelet transform, and it is obvious that the proposed window-based
channel attention provides the largest ERF. Since ERF indicates the ability to
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Fig. 7: Ablation studies on the Kodak [9] dataset (24 images, 768×512 or 512×768). (a)
Channel attention modules (with or without our channel attention, with channel group
attention [6]). (b) Wavelet transform module (with or without wavelet transform).

capture global dependencies in the image, our window-based channel attention
module excels in global information learning compared with other modules from
[6,7,10,11]. For Figs. 8d, 8f and 8h, and Figs. 9d, 9f and 9h, these modules work
without wavelet transform, and they offers smaller ERFs compared with modules
with wavelet transform, validating the effectiveness of the wavelet transform
module in enlarging ERF. It is worth noticing that shifted-window attention
provides an ERF significantly smaller than residual block and window attention,
confirming the restricted growth of receptive fields for shifted-window attention
argued by [18]. Therefore, we replace the shifted-window attention with our
window-based channel attention in our SCH block to capture global dependencies
in image features for LIC.
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(a) Residual block from [7] (b) Window attention from [11]

(c) Shifted-window attention from [11] with
wavelet transform

(d) Shifted-window attention from [11] without
wavelet transform

(e) Channel group attention from [6] with
wavelet transform

(f) Channel group attention from [6] without
wavelet transform

(g) Window-based channel attention (ours) with
wavelet transform

(h) Window-based channel attention without
wavelet transform

Fig. 8: Effective Receptive Fields (ERF) on kodim07 from computational modules.
The color changes from blue to red as the value increases.
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(a) Residual block from [7] (b) Window attention from [11]

(c) Shifted-window attention from [10] with
wavelet transform

(d) Shifted-window attention from [10] without
wavelet transform

(e) Channel group attention from [6] with
wavelet transform

(f) Channel group attention from [6] without
wavelet transform

(g) Window-based channel attention (ours) with
wavelet transform

(h) Window-based channel attention without
wavelet transform

Fig. 9: Effective Receptive Fields (ERF) on kodim20 from computational modules.
The color changes from blue to red as the value increases.
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(a) Ground Truth (bpp↓/PSNR↑) (b) SCH (ours) (0.146/33.159dB)

(c) STF [19] (0.144/32.617dB) (d) VTM-23.1 [17] (0.157/31.963dB)

(e) BPG [4] (0.157/30.611dB) (f) JPEG2000 [14] (0.158/28.034dB)

(g) GT (h) SCH (ours) (i) STF (j) VTM-23.1 (k) BPG (l) JPEG2000

Fig. 10: Reconstructed images of kodim07 from Kodak [9].

F.2 Qualitative Results

We provide more qualitative results in the Kodak [9] and the Tecnick [1] datasets
to compare our SCH method with an available learn method STF [19] and tra-
ditional image codecs in Figs. 10 to 13. Our method reconstructs the clearest
details while maintaining low bit rates in the following results.
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(a) Ground Truth (bpp↓/PSNR↑) (b) SCH (ours) (0.744/31.921dB)

(c) STF [19] (0.784/31.832dB) (d) VTM-23.1 [17] (0.731/31.463dB)

(e) BPG [4] (0.766/30.848dB) (f) JPEG2000 [14] (0.750/28.660dB)

(g) GT (h) SCH (ours) (i) STF (j) VTM-23.1 (k) BPG (l) JPEG2000

Fig. 11: Reconstructed images of kodim01 from Kodak [9].
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(a) Ground Truth (bpp↓/PSNR↑) (b) SCH (ours) (0.220/35.903dB)

(c) STF [19] (0.251/35.609dB) (d) VTM-23.1 [17] (0.223/34.950dB)

(e) BPG [4] (0.234/33.842dB) (f) JPEG2000 [14] (0.231/30.782dB)

(g) GT (h) SCH (ours) (i) STF (j) VTM-23.1 (k) BPG (l) JPEG2000

Fig. 12: Reconstructed images of RGB_OR_1200x1200_003 from Tecnick [1].
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(a) Ground Truth (bpp↓/PSNR↑) (b) SCH (ours) (0.631/32.758dB)

(c) STF [19] (0.668/32.356dB) (d) VTM-23.1 [17] (0.697/32.471dB)

(e) BPG [4] (0.700/31.092dB) (f) JPEG2000 [14] (0.666/28.682dB)

(g) GT (h) SCH (ours) (i) STF (j) VTM-23.1 (k) BPG (l) JPEG2000

Fig. 13: Reconstructed images of RGB_OR_1200x1200_026 from Tecnick [1].
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