
Learning 3D Point Cloud Registration as a Single Optimization Problem 19

A Code of our method

The code of our paper is attached in the CodeForReview directory.

B WeaveNet and its Extension for Sparse Bipartite

Graphs

WeaveNet (WN) is a network written as a function M : Z 7! M , where Z 2
RN,M,D is D-dimensional attributes of N ⇥ M edges. M 2 {0, 1}N⇥M is an
estimate of matching in the form of a binary matrix.

WN is originally developed to solve stable matching approximately. Stable
matching is a strongly NP-hard problem defined on a bipartite graph. Let us
consider a bipartite graph that has N nodes on one side and M nodes on the
opposite side, which we refer to as P and Q on this problem, respectively (|P| =
N and |Q| = M). The graph has N ⇥ M edges. The input of stable matching
differs from the well-known linear assignment problem; the input is weights on
directed edges, where directions are P ! Q and Q ! P. We can represent
edge weights by a matrix of the size N ⇥M . Hence, for two directions, we have
P 2 RN⇥M and Q 2 RM⇥N edge weights.

From these two matrices, Z 2 RN⇥M⇥2 is obtained as

Z = cat(P ,Q>). (9)

We focused on the fact that these inputs and outputs fit to our intention shown
in (2). In addition, we expected that the network-based algorithm is innately
general-purposed and can solve our problem of stochastic linear assignment un-
der an unknown distribution shape. The results reported in 4 proved the expec-
tation was correct.

B.1 Details of the WeaveNet architecture

WN comprises L feature weaving layers followed by one output layer. Let (ZP
` ,Z

Q
`)

be the input to `-th layer. We describe the `-th feature weaving layer as a
function f` : (ZP

` ,Z
Q
`) 7! (ZP

`+1,Z
Q
`+1). The input for the first layer is given

as (ZP
0 ,Z

Q) = (Z, swap(Z)), where swap is a function that swap the compo-
nents derived from P and Q in the tensor Z (i.e., the result is identical to
ZQ
0 = cat(Q,P

>) for Eq. (9), or zQ
(m,n) = cat(q2

m, d(q1
m,p1

n),p
2
n) for Eq. (8)).

f` is designed to pass messages frequently among neighbor nodes on a graph.
Hereafter, we only explain the calculation for the P ! Q direction for simplicity.
Let N (pn) be a set of neighbors of node pn. On a bipartite graph, N (pn) = Q
and N (qm) = P. The uniqueness of each matching candidate of pn should be em-
phasized for matching since selecting only one partner among many candidates
is the task. A feature weaving layer uses the calculation originally proposed for
point segmentation. Namely, it describes the characteristic of qm among Q as

h`,n = max_pooling{�1
`(z`,(n,m))|qm 2 N (pn)}, (10)

20 R. Yanagi et al.

where max_pooling is the max pooling operation, �
1
` is a linear layer inside

of f`, and z(n,m,`) is (n,m)-th element in ZP
` . Here, hA

`,n represent a group
characteriztic of N (pn). h`,n is compared with individual edge features z`,(n,m)

as

g`,(n,m) = pReLU(BN(�2
`(cat(z`,(n,m),h`,n)))), (11)

where �
2
` is another linear layer inside of f`, pReLU is the pReLU function, and

BN is the batch normalization operation.
Second, the layer mixes features obtained for each side to pass messages each

other. Let gP
`,(n,m) and gQ

`,(m,n) be vectors obtained by Eq. (11) for each direction.
f` concatenate them at the end of calculation, which yields

zP
`+1,(n,m) = cat(gP

`,(n,m), g
Q
`,(m,n)). (12)

Finally, the L-th output zL+1,(n,m) is fed to the output layer, which first
applies Eq. (10) with zL+1 as its input, then, calculate

gn,m = softmax(BN(�output(cat(zL+1,(n,m),hL+1,(n,m)))), (13)

where softmax is the softmax function, and gn,m is (n,m)-the element in M .
Note that we obtain the estimate for both directions, and use their average for
prediction.

B.2 Extension for Sparse Bipartite Graph

Unlike the stable matching problem, we can prune edges based on the distance
matrix in advance. We have re-implemented WeaveNet using torch-geometric
to support such edge pruning. It also causes some differences in mathematical
notation from those given in the previous subsection. First, in (10), N (pn) = Q
in the original paper, but N (pn) = {qm|d(pn, qm) r} in our version. Second,
we set gn,m depending on whether (n,m) 2 E or not, as

g
0
n,m =

⇢
gn,m if (n,m) 2 E
0 otherwise.

(14)

C Mathematical definition of evaluation metrics

Evaluation metrics for the 4DMatch, 4DLoMatch, 3DMatch, and 3DLo-
Match. We used the inlier ratio (IR) (also known as accuracy [23]), and non-
rigid feature matching recall (NFMR) as the evaluation metrics for the 4DMatch
and 4DLoMatch datasets following [22, 23, 51]. For ground-truth matches (u 2
R3,v 2 R3) 2 Kgt, predicted matches (û 2 R3,v̂ 2 R3) 2 Kpred, and the

Learning 3D Point Cloud Registration as a Single Optimization Problem 21

ground-truth warping function Wgt, IR, and NFMR are defined as follows:

IR =
1

|Kpred|
X

(û,v̂)2Kpred

[||Wgt(û)� v̂||2 < �], (15)

NFMR =
1

|Kgt|
X

(u,v)2Kgt

[||� (u,A,F)� v||2 < �], (16)

� (u,A,F) =
X

Ai2knn(u,A)

Fi||û�Ai ||�1
2X

Ai2knn(u,A)

||u�Ai||�1
2

, (17)

F = {v̂ � û|(û, v̂) 2 Kpred}, A = {û|(û, v̂) 2 Kpred}, (18)

where � is set as 0.04 m, and || · ||2 and [·] represent the L2-norm and the Iverson
bracket, respectively.

The IR, feature matching recall (FMR), and rigid registration recall (RR)
are used as the evaluation metrics for the 3DMatch and 3DLoMatch datasets
following [22]. The FMR indicates the fraction of pairs with >5% inlier matches
with <10 cm residual under the ground truth transformation, and the RR indi-
cates the fraction of scan pairs where the correct transformation parameters are
identified with RANSAC.
Evaluation metrics for Human Shape data . Following [54], we used the
corresponding percentage (Corr) under controlled error tolerances as the evalu-
ation metric for Human Shape data. The Corr and error tolerance are defined
as follows:

Corr =
1

N
||P � P gt||1, error tolerance = r/max{||pn � pn0 ||, 8n, n0}, (19)

where � and || · ||1 represent the Hadamard product and L1-norm, respectively.
In addition, P gt and r represent the ground-truth correspondence matrix and
the tolerant radius, respectively.

D Additional Reports on Memory Consumption

An analysis of memory consumption, measured in actual training and inference
on 4DMatch with RoITr, is shown in Sec. 4.2 and Tab. 3 of the main paper. Here,
we show additional results on 4DMatch with Lepard and LNDP in Tab. 5 and
Tab. 6. We also privide that on 3DMatch in Tab. 7, Tab. 8, and Tab. 9. These
results show that our modification reduces the memory consumption without
performance drop, regardless of the dataset and method differences.

22 R. Yanagi et al.

Table 5: Memory consumption test on 4DMatch with Lepard. ES and FS stand for
Edge Selection and Feature Summarization, respectively.

Method ES FS train eval. NFMR(") IR(")

WN

151.5 GiB 80.5 GiB 91.2 83.2
X 143.2 GiB 72.1 GiB 90.1 84.2

X 18.7 GiB 10.4 GiB 89.5 85.4
X X 13.4 GiB 7.6 GiB 86.7 86.1

DS - - 6.5 GiB 3.5 GiB 83.7 82.7

Table 6: Memory consumption test on 4DMatch with LNDP.

Method ES FS train eval. NFMR(") IR(")

WN

148.2 GiB 68.7 GiB 91.3 85.4
X 137.4 GiB 68.5 GiB 90.3 85.5

X 16.5 GiB 8.8 GiB 89.5 86.4
X X 10.3 GiB 5.8 GiB 88.7 87.9

DS - - 4.9 GiB 2.5 GiB 85.4 84.5

Table 7: Memory consumption test on 3DMatch with Lepard.

Method ES FS train eval. FMR(") IR(") RR(")

WN

169.5 GiB 90.0 GiB 99.0 58.1 94.0
X 154.3 GiB 84.3 GiB 98.5 59.9 94.1

X 23.2 GiB 12.3 GiB 98.6 60.3 94.1
X X 12.7 GiB 6.9 GiB 98.4 64.5 95.7

DS - - 7.0 GiB 4.5 GiB 98.3 55.5 93.5

Table 8: Memory consumption test on 3DMatch with LNDP.

Method ES FS train eval. FMR(") IR(") RR(")

WN

164.3 GiB 75.6 GiB 99.0 59.9 93.0
X 145.3 GiB 76.5 GiB 98.9 62.1 93.1

X 19.3 GiB 9.4 GiB 98.9 63.5 93.4
X X 10.3 GiB 6.4 GiB 98.6 65.6 94.1

DS - - 6.7 GiB 3.4 GiB 98.1 56.5 92.4

Table 9: Memory consumption test on 3DMatch with RoITr.

Method ES FS train eval. FMR(") IR(") RR(")

WN

143.2 GiB 69.4 GiB 99.1 83.2 93.4
X 132.1 GiB 61.4 GiB 98.9 83.8 94.9

X 17.6 GiB 8.9 GiB 98.9 84.8 95.5
X X 9.9 GiB 5.4 GiB 98.9 86.8 96.2

OT - - 5.8 GiB 2.1 GiB 98.5 80.3 91.0

Learning 3D Point Cloud Registration as a Single Optimization Problem 23

Table 10: Study on the impact of hyperparameters with Lepard. We set uncontrolled
hyperparameters to our defaults (e.g., when r is varied, we used L = 10 and C2 = 16).

Method 4DLoMatch 3DLoMatch
NFMR(") IR(") FMR(") IR(") RR(")

DS 66.9 55.7 84.5 26.0 69.0

WN
r = 0.1 68.2 54.1 80.4 25.6 63.5
r = 0.5 75.3 72.4 89.6 30.4 74.9
r = 1.0 69.3 58.9 88.6 30.6 74.0

WN
L = 6 67.7 57.1 86.2 25.7 70.2
L = 8 68.7 57.2 87.2 27.8 73.5
L = 10 72.4 62.5 89.6 30.4 74.9

WN
C2 = 4 69.8 58.4 84.8 26.6 70.9
C2 = 16 72.4 62.5 89.6 30.4 74.9
C2 = 64 70.1 57.6 87.1 30.2 72.1

Table 11: Study on the impact of hyperparameters with LNDP.

Method 4DLoMatch 3DLoMatch
NFMR(") IR(") FMR(") IR(") RR(")

DS 67.6 57.6 83.1 27.4 71.1

WN
r = 0.1 70.3 58.9 87.1 27.9 73.1
r = 0.5 73.4 62.8 91.3 33.3 76.2
r = 1.0 71.1 60.0 88.3 30.6 72.7

WN
L = 6 69.3 60.1 87.6 29.0 74.3
L = 8 71.3 62.2 90.1 32.3 75.8
L = 10 73.4 62.8 91.3 33.3 76.2

WN
C2 = 4 69.1 58.9 84.9 31.9 72.8
C2 = 16 73.4 62.8 91.3 33.3 76.2
C2 = 64 70.9 60.9 89.2 32.1 74.7

E Additional Reports on Hyperparameter Validation

An ablation study on hyperparameter validation is shown in Sec. 4.4 and Tab. 4
of the main paper. We also show Lepard and LNDP results in Tab. 10 and
Tab. 11. These show that the selected hyperparameter setting works best, re-
gardless of the dataset and method differences.

	Learning 3D Point Cloud Registration as a Single Optimization Problem

