
S2Net: Skeleton-aware SlowFast Network for
Efficient Sign Language Recognition

Supplementary Material

Yifan Yang1 , Yuecong Min2,3 , and Xilin Chen2,3

1 Huazhong University of Science and Technology, Wuhan, China
2 Key Laboratory of AI Safety of CAS, Institute of Computing Technology,

Chinese Academy of Sciences (CAS), Beijing, China
3 University of Chinese Academy of Sciences, Beijing, China
yyf_355@hust.edu.cn, {minyuecong, xlchen}@ict.ac.cn

We first deliver a more detailed description and pseudo code of graph-
structured projectors in Sec A, and then we introduce the concrete realization,
analysis, and discussion of S2Net in Sec B. Afterward, we conduct additional
ablation studies for S2Net in Sec C. Finally, we perform more qualitative results
and analysis in Sec D.

A More Details for Graph-structured projectors

We further elaborate on the detailed process of extracting graph-structured vi-
sual representations, as shown in Fig A. For the index-based projector, we first
standardize the estimated 2D coordinates. Specifically, ’Resize’ adjusts the spa-
tial dimensions of the coordinates to 224×224 to match the resolution of the
input image, while ’Clamp’ is responsible for adjusting any invalid coordinates
to the nearest valid boundary value. Afterward, we index the values from the pre-
extracted feature maps at the corresponding locations based on the standardized
coordinates and finally map these values to the graph-structured space through
a linear projection. For the query-based projector, we first expand the learn-
able embeddings along the temporal dimension to T. Then, the cross-attention
mechanism is utilized to aggregate elements related to specific graph-structured
representation. In this process, the query vector is generated from the feature
maps V ′, while the Key and Value vectors are generated from the learnable
embeddings E. Ultimately, these elements are also projected into the graph-
structured space.

B Detailed Implementations

Implementation details of the S2Net. For the slow pathway, all input im-
age frames maintain a spatial resolution of 256×256, with video frames selected
at a temporal stride of α=2. As for data augmentation, we apply random crop-
ping (224×224), horizontal flipping(50%), and random temporal rescaling(20%).
Only center cropping (224×224) is adopted during inference. Graph-structured
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# X(V)[t, 3, h, w]   -   video data after data augmentation
# X(J)[t, k, 2]         -   estimated skeleton data after data augmentation
# E[t, k, c]             -   learnable embedding
# Wq[c, cin]           -   learnable query matrix to obtain query vector
# Wk[c, cin]           -   learnable key matrix to obtain key vector
# Wv[c, cin]           -   learnable value matrix to obtain value vector
# Visual_Module -   shallow layers of pre-trained ResNet18
# V(0)[t, c, k] -   graph-structrued representation

# extract mid-level visual feature maps
V` = Visual_Module(X(V)) # [t, c, h`*w`]   h` = h*ŋ   w` = w*ŋ
If Index-based:

# standardize 2D coordinates
Jcoor = Clamp(Resize(X(J)))
# convert 2D coordinates into 1D Indices[t, c, k]
Indices = Index(Jcoor)
# aggregate graph-structured representation
XIndex = torch.gather(V`, Indices, dim=2)
# project representation into graph-structured space
V(0) = Linear_Projection(XIndex)

If Query-based:
# cross attention mechanism 
Q, K, V = V` · Wq,   E · Wk, E · Wv # Q[t, h`*w`, cin]   K[t, k, cin]   V[t, k, cin]
Attn = Softmax(Q · KT/(cin)1/2)
XQuery = Feed_Forward(Attn · V) + Attn · V
# project representation into graph-structured space
V(0) = Linear_Projection(XQuery)

Fig.A: Torch-like pseudocode for the core of an implementation of graph-structured
projectors.

representation is derived from mid-level feature maps extracted after the first
two layers of a ResNet18 model pre-trained on the relevant sign language dataset
based on SMKD [1]. For the fast pathway, we use MMPose to obtain the whole
body skeleton data as previous work does [2]. 2D joint coordinates with confi-
dence scores are concatenated as inputs, and only random temporal rescaling
(20%) is applied for augmentation. The entire model is trained for 40 epochs
with a minimum batch size of 4 and optimized by the AdamW optimizer with
a weight decay of 1 × 10−4. The initial learning rate starts as 4 × 10−4 and is
reduced by a factor of 10 at 20 and 35 epochs, respectively. The loss weights
λCR and λKL are set to 2 and 10, respectively. The pathway achieving the best
performance on the dev set is selected as the final prediction.
Implementation details of the baseline and graph-structured projec-
tors. We first employ the complete Resnet18 model as a frame-level feature
extractor for the slow pathway to evaluate the impact of adopting pre-trained
weights and freezing the visual extractor on performance. We then ablate the
index layer of ResNet18 when generating the index-based graph-structured vi-
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Table A: Performance (WER %) of each pathway on ablation results of
index layer on Phoenix14. ‘-’ denotes using the entire ResNet18 as the visual ex-
tractor without indexing. The index layer number indicates the number of residual
layers from ResNet18 utilized.

Pathway Freeze Weight Index Layer
ImageNet Pre-trained Phoenix14 Pre-trained
Dev Test Dev Test

Slow

- 22.3 22.6 21.8 22.0
✓ - 22.9 23.0 21.6 22.0
✓ 1 23.8 23.6 23.2 23.3
✓ 2 27.4 26.7 20.1 20.3
✓ 3 38.5 37.7 34.9 34.0
✓ 4 43.7 47.9 40.5 43.7

Fast

- 22.1 22.7 22.3 22.7
✓ - 22.8 22.8 22.3 22.7
✓ 1 20.5 20.6 21.0 20.9
✓ 2 21.2 21.2 20.5 20.9
✓ 3 21.4 21.2 20.9 21.0
✓ 4 21.0 21.2 21.3 21.6

Average

- 20.7 21.7 20.3 20.7
✓ - 21.5 21.7 20.2 20.8
✓ 1 20.8 20.8 20.6 20.9
✓ 2 21.9 22.7 19.3 19.4
✓ 3 25.6 26.0 24.2 24.1
✓ 4 29.5 29.7 29.0 29.7

sual representation which corresponds to Table 3 in the main paper. For both
ablations above, we only utilize a straightforward fusion strategy where the pre-
diction results of both pathways are summed and averaged, and the detailed
results of each pathway are presented in Table A. In addition, we adopt indexing
the extracted features after the second residual block pre-trained on Phoenix14
as our competitive baseline, with the performance of each pathway on the three
datasets shown in Table B.
Performance of each pathway on three datasets. For the final evalua-
tion, we employ four different prediction pathways: Slow pathway(y(V )), Fast
pathway(y(J)), Frame-wise Fusion(FF) pathway(y(F )), and Average pathway(y(A)),
where the performance of the Average pathway is derived by averaging the pre-
diction results of the other three pathways. This process can be formulated as:

y(A) =
y(V ) + y(J) + y(F )

3
(A)

where y denotes the prediction result and superscript indicates the type of path-
way. We select the pathway with the best performance on the dev set as the final
prediction result. The performance of each pathway is detailed in Table B which
corresponds to Table 1 in the main paper.



4 Y. Yang et al.

Table B: Performance (WER %) of each pathway on Phoenix14/14-T and
CSL-Daily for two types of projectors and baseline. FF denotes the Frame-wise
Fusion pathway. The final results we select are highlighted.

Pathway
PHOENIX14 PHOENIX14-T CSL-Daily

Dev Test Dev Test Dev Test
Baseline

Slow 20.1 20.3 18.8 19.8 27.7 27.2
Fast 20.5 20.9 20.0 20.3 28.9 28.5

Average 19.3 19.4 18.6 19.5 27.7 27.2
Index-based

Slow 18.3 18.3 18.3 18.8 26.8 25.7
Fast 18.2 18.2 18.1 18.9 27.3 26.2
FF 18.2 18.1 18.0 18.9 25.4 24.5

Average 17.6 17.5 17.7 18.4 28.1 26.9
Query-based

Slow 18.1 18.2 18.3 18.9 26.8 25.6
Fast 18.2 18.5 17.2 18.9 26.4 25.9
FF 18.5 18.3 18.1 19.0 25.8 24.5

Average 17.4 17.5 17.6 18.2 27.0 26.1

Specifically, on the Phoenix14 dataset, both projectors achieve optimal per-
formance on the Average pathway, with results of 17.6%/17.5% and 17.4%/17.5%,
respectively. However, on the CSL-Daily dataset, the Frame-wise Fusion(FF)
pathway exhibits superior performance over the Average pathway(from 28.1% to
25.4%, from 27.0% to 25.8%). On the Phoenix14-T dataset, for the index-based
projector, the Average pathway demonstrates the best performance(17.7%/18.4%).
In contrast, the Fast pathway performs best(17.2%/18.9%) for the query-based
projector.
Implementation details of the frame-wise fusion. First, we perform tem-
poral interpolation on the frame-wise features for the slow pathway to match
the frame rates of both pathways. Next, we concatenate and fuse the features
using an extra linear layer.

C Additional Ablation Studies

Ablation on pre-trained dataset. By utilizing a pre-trained visual module to
construct the graph-structured representation, we hypothesize that the proposed
method can also be used to assess the transferability across different datasets. We
conduct an ablation on the pre-trained dataset and present results in Table C,
on sign language datasets consistently outperforms pre-training on ImageNet by
more than 0.4% WER on the dev set. We can also observe that pre-training
the visual module on Phoenix14-T yields the best performance on the dev set at
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Table C: Ablation results (WER %) of the pre-trained dataset on
Phoenix14.

Pre-trained Dataset ImageNet Phoenix14 Phoenix14T CSL-Daily
WER 18.7/18.7 17.7/17.7 17.4/17.9 18.2/18.0

Table D: Ablation results (WER %) of S2Net on Phoenix14-T and CSL-
Daily, GCA and FF denote Group-wise Cross-attention and Frame-wise Fusion, re-
spectively.

Dataset
Graph-structured Projector

GCA FF Dev Test
Index-based Query-based

PHOENIX14-T

✓ 19.5 19.7
✓ ✓ 17.8 18.4
✓ ✓ 18.5 18.5
✓ ✓ ✓ 17.7 18.4

✓ ✓ ✓ 17.2 18.9

CSL-Daily

✓ 28.8 27.8
✓ ✓ 26.2 25.4
✓ ✓ 26.1 25.1
✓ ✓ ✓ 25.4 24.5

✓ ✓ ✓ 25.8 24.5

17.4%. This improvement may be attributed to the similarity between Phoenix14
and Phoenix14-T, both of which are collected from the same source.
More ablation on S2Net designs. We further evaluated the effect of the
S2Net designs on the Phoenix14-T and CSL-Daily datasets, and the results are
presented in Table D. Similarly, the adoption of both group-wise cross-attention
and frame-wise fusion improves the recognition performance and the best results
are achieved by adopting all of them. Moreover, adopting the query-based pro-
jector also achieves competitive performance on both datasets. The effectiveness
of each component of S2Net has been further demonstrated.

D More Qualitative Analysis

Visualizations of several learnable queries. The query-based projector aims
to capture the visual feature for each joint without an explicit pose estimation
stage. Although the input is a sequence of queries, we assume each learnable
query has the ability to identify the corresponding region through the cross-
attention between it and the extracted feature maps. We provide visualizations
of the cross-attention maps for several queries, as shown in Fig B, which can
relatively confirm our assumption. Subsequently, we organize the captured fea-
tures into a graph sequence, feed it into the GCNs, and interact with the RGB
path as the index-based projector does.
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Fig. B: Visualizations of the cross-attention maps for several queries in the query-
based projector, where K is the number of learnable queries.

REF: blank __on__ nord nordwest danach verdichten wolke verdichten anfang regen __off__

Index mehr cl-kommen

nordwestraumQuery cl-kommen

Fig. C: Visualizations of the predictions from the different projectors. Wrong recog-
nized glosses (except del) are marked in red.

Visualizations of the failure cases. We compare the predictions of the two
types of projectors, as shown in Fig C. The query-based projector excels with
words with complex and fast-moving movements (e.g ., regen) due to inaccuracies
in pose estimation, but it struggles with capturing detailed static information
(e.g ., nordwest). From a statistical perspective, the query-based projector re-
duces deletion errors (6.2% vs. 5.3%) while increasing substitution errors (8.8%
vs. 9.5%) than the index-based projector. Besides, heatmaps provided in the
main paper and Fig D show that the dispersion and incomplete attention re-
gions of the query-based projector may also bring inevitable loss.
More visualizations on other datasets. To demonstrate the advantages of
the query-based projector more clearly, we perform further visualization analyses
on Phoenix14-T and CSL-Daily datasets, as shown in Fig D. In most cases, the
query-based projector is more accurate in capturing the hand region and provides
a wider field of view, especially on the CSL-Daily dataset. However, we also find
that the query-based projector may have some shortcomings in capturing fine-
grained details when focusing on global information. This lack of detail could be
one of the reasons limiting its full potential.
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Fig.D: More visualizations of cross-attention maps and index maps generated from
two types of projectors on Phoenix14-T and CSL-Daily.


	S2Net: Skeleton-aware SlowFast Network for Efficient Sign Language Recognition Supplementary Material

