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Abstract. This supplementary document provides our superclass for-
mulation (Section 1), implementation details for our method (Section 2),
additional ablations for superclass groups as well as source and number
of pseudo-labels (Section 3), and qualitative examples including some
failure cases and comparison to previous methods (Section 4).

1 Superclass Grouping

The OWOD benchmarks are based on the set of COCO classes, which follow a
superclass hierarchy specified in the official COCO annotation files. Following
the same hierarchy and the benchmark splits, superclasses introduced at each
task for both S-OWOD and M-OWOD benchmarks can be found in Table 1.
Since S-OWOD tasks are designed to have perfect superclass separation, each
superclass introduced in a task is learned from scratch and to completion. On the
other hand, on M-OWOD, a task might have only some of the classes belonging
to a certain superclass in the current training set. For example, in M-OWOD
Task 1, only bird, cat, cow, dog, horse, and sheep classes are learned from the
animal superclass; while elephant, bear, zebra, and giraffe are learned in Task 2.
Regardless, if any class of a superclass is present, we introduce it at the current
task. Unseen classes are still considered unknown, following the benchmark rules.

Benchmark Task Superclasses Used During Training

S-OWOD

1 animal, person, vehicle
2 accessory, appliance, furniture, outdoor
3 food, sports
4 electronic, indoor, kitchen

M-OWOD

1 animal, electronic, furniture, kitchen, person, vehicle
2 accessory, animal, appliance, outdoor, vehicle
3 food, sports
4 electronic, furniture, indoor, kitchen

Table 1: Superclass Separation Across Tasks.
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As the unseen classes become available in the continual learning procedure, we
continue training the specific weights of the partially introduced superclasses.
We underline partially learned superclasses in Table 1. Although partially learn-
ing the superclass representations hurt the odd-one-out scoring in theory, our
experimental results show that our method can still generalize to such a setting.

2 Implementation Details

Our pipeline can be considered as a two-step approach: first, we train the RPN
to extract pseudo-labels, then we train our open-world detection model.

Pseudo-labels Extraction Step: We train the RPN with surface normal maps
estimated by the DPT-Hybrid model [11] from the Omnidata repository [3] as in
GOOD [6] and store the proposals. We train the RPN of each task from scratch
to obey the benchmark rules and not use any unknown instances for training.
We select the pseudo-labels by thresholding the RPN’s confidence score with 0.5
and then merge them with real targets by applying Non-Maximum Suppression
with an IoU threshold of 0.5.

OWOD Step: Our detection model is based on the DN-DAB-Deformable
DETR [9,8] architecture, with the same feature extraction backbone as pre-
vious work: ResNet-50 FPN [5] pre-trained on ImageNet [2] in a self-supervised
manner [1]. We decompose our loss function into localization and classifica-
tion. The localization losses are applied to queries matched to both knowns and
pseudo-unknowns, while classification losses are only applied to queries matched
to known targets. We use loss coefficients 5 for bounding box loss, 2 for giou
loss, 2 for per-class classification loss, and 2 for superclass classification loss. We
follow the default hyperparameters of DN-DAB-Deformable DETR for the de-
noising tasks. In addition, we add a denoising task for superclass classification,
using the same hyperparameters as the per-class denoising loss, to randomly flip
the ground truth labels for noised queries and teach the model to correct them.

M-OWOD Bug Fix: We found duplicate image IDs in the test set of M-
OWOD, which can affect the performance of DETR-based methods based on
how the matching operation is done during evaluation. We detected that OW-
DETR and PROB were affected by this bug. The codes of more recent DETR-
based methods, CAT and USD, were not available to check. In Table 2, we report
performance changes of OW-DETR and PROB on Task 1 after fixing the bug.

Method U-Recall (↑) mAP (↑)

OW-DETR† 7.6 → 10.1 58.8 → 65.6
PROB 19.4 → 28.3 59.5 → 66.4
O1O 33.4 → 49.3 58.4 → 65.1

Table 2: Performance Improvements after M-OWOD Bug Fix
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We trained OW-DETR from scratch for Task 1 (denoted with †), because we
couldn’t reproduce their results with the checkpoints provided. Therefore, we
can only report the performance change in Task 1. PROB’s results on all tasks,
with and without the fix, are also reported in Table 1 of the main paper. O1O’s
performance, with and without the fix, are consistent. We achieve significantly
higher Unknown Recall while maintaining competitive performance in Known
mAP. Compared to PROB, we obtain +74.2% increase in Unknown Recall with
only -2.0% decrease in Known mAP.

3 Additional Ablations

3.1 Varying Superclass Groups

Group ID Superclasses

A living beings, objects

B pets, wild animals, land vehicles, air/water vehicles,
seating furniture, household items, person

C pets, farm animals, wild animals, bikes (2-wheel), land vehicles (4-wheel),
air/water vehicles, seating furniture, electronics, household items, person

D (Default) animals, vehicles, person, furniture, electronics, kitchen

(a) M-OWOD

Group ID Superclasses

A living beings, objects

B domestic animals, wild animals, person, land vehicles, air/water vehicles

C large animals, medium animals, small animals, person
bikes (2-wheel), land vehicles (4-wheel), air vehicles, water vehicles

D (Default) animals, person, vehicles

(b) S-OWOD

Table 3: Different Groupings of Classes into Superclasses

To evaluate the robustness of our method to different superclass groups, we
explore broader and narrower sets of superclasses than the default grouping (D)
used in the main paper in Table 3. First, in A, we combined all non-living things
into a single objects class and grouped animals and humans as living beings.
Conversely, we explored more fine-grained groupings in B and C by dividing
animals into categories like pets, farm animals, domestic or wild animals, or by
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size into large, medium, and small. Additionally, we organized vehicles based on
the number of wheels and their typical usage. The default (D) groups for each
benchmark are formed using the official superclass labels in COCO annotations.
We used the default groups in our main results in the paper to comply with
recognized standards and minimize subjective biases.

Group ID M-OWOD S-OWOD

U-Recall mAP U-Recall mAP

A 40.0 64.9 48.2 72.1
B 48.5 65.0 51.3 72.5
C 48.9 64.8 51.4 70.8
D (Default) 49.3 65.1 49.8 72.6

Table 4: Results by Varying Superclass Groups

We report the results of this ablation on Task 1 of both benchmarks in
Table 4. Group A consists of living beings and objects. On M-OWOD, forcing
various objects such as furniture, electronics, kitchen items, and vehicles into a
single group leads to an oversimplification. This results in a generic distribution
to which any class can belong including unknowns, hence the drop in unknown
recall. For S-OWOD, since objects only consist of vehicles, the setup is very
close to default, with the only difference being the merging of animal and person
classes. As a result, the performance drop is not as significant. Note that animal
and person classes are similar enough that the ‘living beings’ distribution does
not unintentionally cover representations of other classes.

For B, the results are similar to the default case. As superclasses narrow down
in Group C, known performance drops while unknown performance increases
slightly. This can be attributed to unknowns standing out more as odd-one-outs
as superclass representation groups become smaller in the feature space. Overall,
these results confirm that our method performs well across different superclass
groups with varying granularity, supporting the robustness of our approach.

3.2 Source of Pseudo-labels

To analyze the strength of geometric pseudo-labels with our method, we per-
formed an additional study to compare them to RGB-based proposals. We
trained the RPN module using three sources of input: RGB images, predicted
depth maps, and predicted surface normal maps. For clarity, the detection model
always receives the RGB images as input. Here, we only modify the input to the
RPN module. As shown in Table 5, while the Unknown Recall of RGB and
surface normals are close on the M-OWOD benchmark, the difference becomes
visible in S-OWOD. The reason behind is the effect of dataset size. The M-
OWOD Task 1 dataset is approximately one-sixth the size of the S-OWOD Task
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Source M-OWOD S-OWOD

U-Recall (↑) mAP (↑) U-Recall (↑) mAP (↑)

RGB 50.5 → 51.5 53.2 → 62.8 48.7 70.3
Depth 46.8 → 48.0 54.9 → 63.0 45.9 72.6
Normals 50.7 → 51.6 55.0 → 63.6 52.9 71.0

Table 5: Varying the Source of Pseudo-Labels

1 dataset. Hence, any use of extra supervision helps the model to improve its
recall significantly. However, in the abundance of training instances, such as in
S-OWOD, the detection model already leverages the full spectrum of informa-
tion available from RGB input. Therefore, when surface normals are used, it
outperforms the RGB variant by +4.2 in Unknown Recall with a +0.7 better
Known mAP. In both benchmarks, RGB pseudo-labels cause the most confusion,
hurting the known mAP considerably.

Depth alone has the poorest performance among the three methods in terms
of unknown performance. Due to the tradeoff between known and unknown
performance, this leaves room for known performance to be relatively higher.
Overall, surface normals yield the highest unknown recall on both benchmarks
and the least negative impact on known performance.

Furthermore, we performed additional experiments without the superclass
component to showcase the improvements gained by using them (trained with-
out → with). We used the M-OWOD benchmark since the smaller dataset size
allows for faster experiments. The results confirm that superclasses generalize to
pseudo-labels from different sources, and shaping the representation helps both
Unknown Recall and Known mAP across all three settings.

3.3 Number of Pseudo-labels

After deciding which source of pseudo-labels to use, the next question is how
many to use. We conducted experiments with different numbers of pseudo-labels
on M-OWOD Task 1, utilizing surface normals as the source. We implement the
number of pseudo-labels as a constraint after the NMS module and confidence
thresholding. This means that after removing overlapping or low-confidence
boxes, we select the top-k boxes, where k is the number of known ground truth
targets plus the number of pseudo-labels.

We report how Known mAP values evolve against Unknown Recall in Fig. 1.
We start with small numbers such as 1, 3, and 5, which are typically used in
previous work [7,4,10], and increase the number up to half of total number of
queries, which is 100. Our experiment results demonstrate the trade-off between
known and unknown performance. As the number of pseudo-labels increases,
Unknown Recall shows a clear improvement until the number 20. Known mAP
has an unstable response to the number of pseudo-labels until the number 5,
remaining in a range, after which it exhibits a clear decreasing trend, as expected.
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Fig. 1: Number of Pseudo-labels Ablation.

After the number 20, both Known mAP and Unknown Recall decline because
the noisy and inaccurate pseudo-supervision dominates the signals coming from
the actual ground truth supervision. As the equilibrium point, we use 20 pseudo-
labels per image in our method. This is not implemented as a hard constraint,
meaning if there are fewer than 20 pseudo-boxes with a confidence score greater
than our confidence threshold (0.5), we use exactly how many there are.

4 Qualitative Examples

We visualize the top-10 proposals of OW-DETR [4], PROB [12] and our model
O1O in Fig. 2 for S-OWOD and in Fig. 3 for M-OWOD. In most cases, OW-
DETR and our method have a better ranking than PROB, prioritizing known
objects with higher confidence and representing unknown predictions with lower
scores. As shown in Fig. 2, our model can locate the monitor, frame and tape
precisely in the first row, can detect the box on the ground and and the tires
of the plane as separate objects, and finds the pans and the towel in the third
row, while previous work failed to do so. Some detected unknowns are not even
annotated in the official COCO dataset, therefore not contributing to the Un-
known Recall metric, such as tape and towel. Lastly, without any unknowns
present, such as the last two rows, our method can label known objects without
any confusion and does not produce unnecessary unknown predictions with high
confidence scores. Our method performs similarly on M-OWOD as illustrated
in Fig. 3. It can precisely detect the lamps, frames, buildings, or small objects
in the background while maintaining a meaningful ranking between known and
unknown predictions.
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Fig. 2: Qualitative Comparison on S-OWOD. Visualizations of top-10 pro-
posals of OW-DETR, PROB, and O1O(Ours).
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Fig. 3: Qualitative Comparison on M-OWOD. Visualizations of top-10 pro-
posals of OW-DETR, PROB, and O1O(Ours).
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Failure Cases: Since our pseudo-labels depend on predicted surface normals,
O1O is vulnerable to cases when surface normals cannot be estimated accurately.
One failure mode is when textual differences in a large background, like the sky or
floor, cause relative differences in local normal values. This encourages the model
to predict objects in such regions, as in the first row of Fig. 4. Another failure
mode occurs in complex indoor scenes with many objects, sometimes because
the objects have flat shapes, such as keyboards, or because of crowded regions
with entangled objects, as in the second row of Fig. 4. Our model occasionally
ranks blank regions that do not correspond to real objects higher than known
classes, such as the person and dog in the upper left, the table in the upper right,
the sofa/chair in the lower left, or the person in the lower right of Fig. 5.

Incremental Learning: In Fig. 6 and 7, we visualize the predictions of O1O
across different tasks of S-OWOD and M-OWOD respectively. Different than pre-
vious top-k visualizations, we show the predictions matched to ground truth ob-
jects to showcase the development clearly. Although some classes are unknown in
the first tasks, our model can still locate them. As the space of known categories
expands, O1O learns to label them correctly without forgetting the previously
learned classes, showing the effectiveness of our exemplar replay fine-tuning.

Fig. 4: Failure cases on S-OWOD. Due to reliance on estimated surface nor-
mals, our model may generate redundant pseudo-labels in areas with local tex-
ture differences (top) or struggle to detect objects in crowded scenes (bottom).
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Fig. 5: Failure cases on M-OWOD. Examples of ranking redundant unknown
predictions higher than some known instances.

Fig. 6: Incremental Learning Performance Across Tasks. Visualizations
of predictions matched to ground truth objects across the tasks of S-OWOD.
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Fig. 7: Incremental Learning Performance Across Tasks. Visualizations
of predictions matched to ground truth objects across the tasks of M-OWOD.
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